首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   79篇
  国内免费   5篇
  2024年   2篇
  2023年   14篇
  2022年   24篇
  2021年   39篇
  2020年   44篇
  2019年   130篇
  2018年   77篇
  2017年   49篇
  2016年   39篇
  2015年   46篇
  2014年   58篇
  2013年   80篇
  2012年   77篇
  2011年   71篇
  2010年   46篇
  2009年   33篇
  2008年   35篇
  2007年   24篇
  2006年   30篇
  2005年   22篇
  2004年   19篇
  2003年   19篇
  2002年   11篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1967年   1篇
排序方式: 共有1034条查询结果,搜索用时 15 毫秒
971.
972.
Metabolic reprogramming of non‐cancer cells residing in a tumor microenvironment, as a result of the adaptations to cancer‐derived metabolic and non‐metabolic factors, is an emerging aspect of cancer–host interaction. We show that in normal and cancer‐associated fibroblasts, breast cancer‐secreted extracellular vesicles suppress mTOR signaling upon amino acid stimulation to globally reduce mRNA translation. This is through delivery of cancer‐derived miR‐105 and miR‐204, which target RAGC, a component of Rag GTPases that regulate mTORC1 signaling. Following amino acid starvation and subsequent re‐feeding, 13C‐arginine labeling of de novo synthesized proteins shows selective translation of proteins that cluster to specific cellular functional pathways. The repertoire of these newly synthesized proteins is altered in fibroblasts treated with cancer‐derived extracellular vesicles, in addition to the overall suppressed protein synthesis. In human breast tumors, RAGC protein levels are inversely correlated with miR‐105 in the stroma. Our results suggest that through educating fibroblasts to reduce and re‐prioritize mRNA translation, cancer cells rewire the metabolic fluxes of amino acid pool and dynamically regulate stroma‐produced proteins during periodic nutrient fluctuations.  相似文献   
973.
Abstract

Nickel oxide nanoparticles (NiO NPs) have received great interests in medical and biotechnological applications. However, their adverse impacts against biological systems have not been well-explored. Herein, the influence of NiO NPs on structural changes, heme degradation and aggregation of hemoglobin (Hb) was evaluated by UV-visible (Vis) spectroscopy, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), and molecular modeling investigations. Also, the morphological changes and expression of Bax/Bcl-2 mRNA in human lymphocyte cell exposed to NiO NPs were assayed by DAPI staining and quantitative real-time PCR (qPCR), respectively. The UV-Vis study depicted that NiO NPs resulted in the displacement of aromatic residues and heme groups and production of the pro-aggregatory species. Intrinsic and Thioflavin T (ThT) fluorescence studies revealed that NiO NPs resulted in heme degradation and amorphous aggregation of Hb, respectively, which the latter result was also confirmed by TEM study. Moreover, far UV-CD study depicted that NiO NPs lead to substantial secondary structural changes of Hb. Furthermore, near UV-CD displayed that NiO NPs cause quaternary conformational changes of Hb as well as heme displacement. Molecular modelling study also approved that NiO NPs resulted in structural alterations of Hb and heme deformation. Moreover, morphological and genotoxicity assays revealed that the DNA fragmentation and expression ratio of Bax/Bcl-2 mRNA increased in lymphocyte cells treated with NiO NPs for 24?hr. In conclusion, this study indicates that NiO NPs may affect the biological media and their applications should be limited.

Communicated by Ramaswamy H. Sarma  相似文献   
974.
Background: Campylobacter spp. are the main cause of human gastroenteritis. The 16SrRNA sequencing is one of fast molecualr method to detect this fastidious. In this study, we compared the sequencing of 16srRNA genewith four housekeeping genestodetect Campylobacter spp. in patients with diarrhea and healthy people.Methods:60 samples of Campylobacter DNA extracted from stool samples of 30 patients with diarrhea and 30 healthy people were used. In order to detect Campylobacter, we designed primers for proliferation of 16SrRNA, cadF, dnaJ, slyD , and rpoA genes using Primer 3, Mega 4.0 and Blast software. Then the PCR products were sequenced using ABI system.Results:The sequencing showed concordance of PCR-products with deposited sequences in the Gene Bank. Among diarrhea patients, 53.3% of samples were significantly (p< 0.05) positive for slyD and cadF genes and 50% of samples were positive using 16SrRNA, rpoA, and dnaJ genes by PCR assay. The average of sensitivity and specificity were found 53.33% and 83.33%, respectively.Conclusion:Due to various copies of repeated sequences of 16SrRNA gene, analyzing its amplicons on electrophoresis may be more difficult than the slyD and cadF genes. According to our results, among the 5 studied genes; the highest detection rate was related to slyD and cadF genes. Although, dnaJ and rpoA genes,instead of 16SrRNA gene, can be considered as appropriate genes for molecular detection of Campylobacter bacteria.  相似文献   
975.

Background  

Previous studies have proposed correlation between variants of the cerebral arterial circle (also known as circle of Willis) and some cerebrovascular diseases. Differences in the incidence of these diseases in different populations have also been investigated. The study of variations in the anatomy of the cerebral arterial circle may partially explain differences in the incidence of some of the cerebrovascular diseases in different ethnic or racial groups.  相似文献   
976.
Bioprocess and Biosystems Engineering - Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar...  相似文献   
977.
Abstract

In order to study the interaction of the anticancer agent Doxorubicin with the single-walled carbon nanotubes with different diameters as drug delivery systems, the molecular dynamics (MD) simulations have been used. Also, for design and development of intracellular Doxorubicin drug delivery systems, a series of steered MD simulations are applied to explore the possibility of encapsulated Doxorubicin–carbon nanotube penetration through a lipid bilayer in presence and absence of Nicotine molecules at different pulling rates. Our simulation results showed that in spite of the adsorption of drug molecules on the outer sidewall of the nanotubes, the spontaneous localization of one Doxorubicin molecule into the cavity of the nanovectors with larger diameters is observed. It is found that the presence of Nicotine molecules in extracellular medium increases the required force for pulling nanotube-encapsulated drug as well as the required time for penetration process, especially at higher velocity. Also, the entering process of the Nicotine molecules into the carbon nanotube causes that the encapsulated drug molecule is fully released in the hydrophobic phase of the lipid bilayer.

Communicated by Ramaswamy H. Sarma  相似文献   
978.
Hematologic malignancies comprise a considerable part of cancers with high mortality at any age. Since the introduction of hematopoietic stem cell transplantation (HSCT), the overall survival of patients dramatically increased. The main goal of HSCT is the induction of a graft-versus-leukemia effect to eradicate the residual cancer cells and also reconstitute a healthy immune system for patients. However, relapse is a nettlesome challenge of HSCT. Like many other tumors, hematologic cancer cells induce immune exhaustion leading to immune escape and relapses after HSCT. Besides malignant cells, inhibitory cells such as tumor-associated macrophages and myeloid-derived suppressor cells express various inhibitory receptors capable of inducing exhaustion in immune cells, especially T and natural killer cells. The significance of immune checkpoint blocking in tumor regression in clinical trials led to the 2018 Nobel Prize in Physiology/Medicine. Here, we reviewed the clinical roles of immune checkpoints in hematologic malignancies and post-HSCT relapses.  相似文献   
979.
Age and sex need to be considered in the establishment of reference intervals (RIs), especially in early life when there are dynamic physiological changes. Since data for important biomarkers in healthy neonates and infants are limited, particularly in Iranian populations, we have determined age-specific RIs for 7 laboratory biochemical parameters. This cross-sectional study comprised a total of 344 paediatric participants (males: 158, females: 186) between the ages of 3 days and 30 months (mean age: 12.91 ± 7.15 months). Serum levels of creatinine, urea, uric acid, calcium, phosphate, vitamin D and high-sensitivity C-reactive protein (hs-CRP) were measured using an Alpha classic-AT plus auto-analyser. We determined age-specific RIs using CLSI Ep28-A3 and C28-A3 guidelines. No sex partitioning was required for any of the biomarkers. Age partitioning was required for kidney function tests and phosphate. The serum concentration of urea and creatinine increased with age, while phosphate and uric acid decreased with age. Age partitioning was not required for serum calcium, vitamin D, and hs-CRP, which remained relatively constant throughout the age range. Age-specific RIs for 7 routine biochemical markers were determined to address critical gaps in RIs in early life to help improve clinical interpretation of blood test results in young children, including neonates. Established age partitions demonstrate the biochemical changes that take place during child growth and development. These novel data will ultimately better disease management in the Iranian paediatric population and can be of value to clinical and hospital laboratories with similar populations.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号