首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   919篇
  免费   76篇
  国内免费   5篇
  1000篇
  2024年   2篇
  2023年   15篇
  2022年   32篇
  2021年   37篇
  2020年   44篇
  2019年   131篇
  2018年   75篇
  2017年   46篇
  2016年   39篇
  2015年   45篇
  2014年   58篇
  2013年   76篇
  2012年   74篇
  2011年   68篇
  2010年   45篇
  2009年   31篇
  2008年   32篇
  2007年   22篇
  2006年   29篇
  2005年   21篇
  2004年   17篇
  2003年   15篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1970年   2篇
  1967年   1篇
排序方式: 共有1000条查询结果,搜索用时 0 毫秒
51.
Hemagglutinin–neuraminidase (HN) protein besides its mediation in viral pathogenesis, is composed of various antigenic sites which stimulate production of host’s antibodies. Thus, application of this protein in serological tests and vaccination plays a major role in biosecurity and control programs. In the present study, we designed a recombinant HN protein containing different neutralizing antigenic sites with velogenic patterns, and sub-cloned it into pET-43.1a+ expression vector. The expression of NusA-HN recombinant protein was induced. Affinity chromatography protein purification using HisPur? Ni–NTA was then conducted. Moreover, we performed western-blot technique using HRP-conjugated Anti His-Tag. Results revealed that following induction of recombinant protein, two distinct bands of HN-61 kDa and NusA-63 kDa were purified and identified by western-blotting. We recommend further analysis should be carried out to determine the functional role of this recombinant protein in enzyme-linked immunosorbent assays for Newcastle disease diagnosis. This HN protein containing multi neutralizing antigenic sites might also be applicable in vaccination programs to increase vaccines potency.  相似文献   
52.
The inhibition of water permeation through aquaporins by ligands of pharmaceutical compounds is considered as a method to control the cell lifetime. The inhibition of aquaporin 1 (AQP1) by bacopaside-I and torsemide, was explored and its atomistic nature was elucidated by molecular docking and molecular dynamics (MD) simulation collectively along with Poisson-Boltzmann surface area (PBSA) method. Docking results revealed that torsemide has a lower level of docking energy in comparison with bacopaside-I at the cytoplasmic side. Furthermore, the effect of steric constraints on water permeation was accentuated. Bacopaside-I inhibits the channel properly due to the strong interaction with the channel and larger spatial volume, whereas torsemide blocks the cytoplasmic side of the channel imperfectly. The most probable active sites of AQP1 for the formation of hydrogen bonds between the inhibitor and the channel were identified by numerical analysis of the bonds. Eventually, free energy assessments indicate that binding of both inhibitors is favorable in complex with AQP1, and van der Waals interaction has an important contribution in stabilizing the complexes.  相似文献   
53.
54.

Objectives

To investigated the potential of a novel dendrosomal nanoformulation of curcumin (DNC) in blocking radiation-induced changes in irradiated human umbilical vein endothelial cells (HUVECs), and their adhesion to human THP-1 monocytoid cells.

Results

Co60 gamma rays reduced viability, raised the expression of adhesion molecules, ICAM-1, VCAM-1 and E-selectin (mRNA and protein), augmented the adhesion of THP-1 cells to HUVECs, activated NF-κB binding, increased the release of pro-inflammatory cytokines (IL-6, IL-8 and MCP-1) and induced oxidative damage (reduced glutathione declined, while 8-OHdG and TBARS increased). 5 µM DNC significantly inhibited these radiation-induced changes, activated the Nrf-2 pathway, and effectively suppressed THP-1 adhesion to HUVECs, implicating p38 MAPK signaling.

Conclusion

DNC treatment is a potential preventive method against inflammation and vascular damage from ionizing radiation.
  相似文献   
55.
A comparative biochemical and structural study was performed on a cold active α-amylase from Bacillus cereus (BCA) and two well-known homologous mesophilic and thermophilic α-amylases from Bacillus amyloliquefaciens (BAA) and Bacillus licheniformis (BLA). In spite of a high degree of sequence and structural similarity, drastic variations were found for Topt as 50, 70 and 90 °C for BCA, BAA and BLA, respectively. The half-lives of thermoinactivation were 1 and 9 min for BCA and BAA at 80 °C respectively, whilst there was no inactivation for BLA at this temperature. Thermodynamic studies on inactivation process suggested that lower thermostability of BCA is due to lower inactivation slope of the Arrhenius plots and subsequently, lower Ea and ΔH#. Increased Km and accessible surface area for catalytic residues along with a decreased number of internal interactions in this region in BCA compared to BLA suggest that BCA substrate-binding site might be temperature sensitive and is probably more flexible. On the other hand, fewer ion pairs, destructive substitutions and disruption of aromatic interaction networks in structurally critical regions of Bacillus α-amylases result in a severe decrease in BCA thermostability compared to its mesophilic and thermophilic homologues.  相似文献   
56.
57.
58.
59.
Bacterial Metabolism of Mevalonic Acid   总被引:1,自引:4,他引:1       下载免费PDF全文
Soluble cell-free extracts of actinomycete S4 grown on media containing mevalonate catalyze acetoacetate formation from mevalonate, mevaldate, and β-hydroxy-β-methylglutaryl-coenzyme A (CoA). Conversion of mevalonate to acetoacetate involves formation of free β-hydroxy-β-methylglutaryl-CoA, but not free mevaldate. The reaction favors mevalonate oxidation, and nicotinamide adenine dinucleotide, rather than nicotinamide adenine dinucleotide phosphate, acts as oxidant.  相似文献   
60.
Brain tumors are the most common form of solid tumors in children and is presently a serious therapeutic challenge worldwide. Traditional treatment with chemotherapy and radiotherapy was shown to be unsuccessful in targeting brain tumor cancer stem cells (CSCs), leading to recurrent, treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is an effective antitumor therapeutic strategy which offers a novel, targeted approach for eradicating pediatric brain tumor CSCs by utilizing mechanisms of cell killing that differ from conventional therapies. A number of studies and some clinical trials have therefore investigated the effects of combined therapy of radiations or chemotherapies with oncolytic viruses which provide new insights regarding the effectiveness and improvement of treatment responses for brain cancer patients. This review summarizes the current knowledge of the therapeutic potency of OVs-induced CSCs targeting in the treatment of brain tumors for a better understanding and hence a better management of this disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号