首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   5篇
  87篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2015年   8篇
  2014年   9篇
  2013年   8篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有87条查询结果,搜索用时 0 毫秒
51.
Circadian rhythms affect the total cholesterol levels in humans and animals, although their effect on cholesterol synthesis remain poorly understood. Here, we show for the first time that intermediates of the post-squalene portion of cholesterol synthesis also follow a circadian rhythm in the mouse liver. We used Crem-knock-out mice to investigate the effects of cAMP response element modulator (CREM) isoforms on cholesterol synthesis over time, as compared to wild-type mice. Multiple linear regression and cosinor statistical analysis were carried out on data obtained from 166 liver samples of mice, and the 24-h profiles were modelled across genotype, gender and zeitgeber time for lanosterol, 24,25-dihydrolanosterol, testis meiosis-activating sterol, and 7-dehydrocholesterol, along with cholesterol. The levels of these sterols were higher in female mice compared to males, although the genotype/gender factors showed no effects on the circadian oscillation of these sterols, except for 24,25-dihydrolanosterol. This study also highlights the importance of the statistical methods, where time, genotype and gender are the studied variables.  相似文献   
52.
Active organisms modify the substratum in which they dwell. This process, called “bioturbation”, affects the way that biogeochemical fluxes are mediated at the substratum–water interface. In the frame of this work, the bioturbation potential of the Asiatic clam Corbicula fluminea was characterized and quantified. We measured the displacement of fluorescent particles by C. fluminea burying in a size-based experimental design in order to explore the effects of body-size on sediment reworking. Our results stress that C. fluminea belongs to the functional group of biodiffusors, and that C. fluminea can be considered as an intermediate sediment reworker. We suggest that bioturbation was mainly induced by the pedal-feeding activity of the clams. Results also showed that, though large clams induced displacement of particles deeper into the sediment, small clams showed the highest net sediment reworking activity. This result was in contrast to the initial hypothesis of biovolume as the main driver for particle displacement by bioturbating organisms. Life-history traits and specific features of pedal-feeding could explain the observed pattern.  相似文献   
53.
Periphyton is a complex assemblage of micro- and meiofauna embedded in the organic matrix that coats most submerged substrate in the littoral of lakes. The aim of this study was to better understand the consequences of depth-level fluctuation on a periphytic community. The effects of light and wave disturbance on the development of littoral periphyton were evaluated in Lake Erken (Sweden) using an experimental design that combined in situ shading with periphyton depth transfers. Free-living nematodes were a major contributor to the meiofaunal community. Their species composition was therefore used as a proxy to distinguish the contributions of light- and wave-related effects. The periphyton layer was much thicker at a depth of 30 cm than at 200 cm, as indicated by differences in the amounts of organic and phototrophic biomass and meiofaunal and nematode densities. A reduction of the depth-level of periphyton via a transfer from a deep to a shallow location induced rapid positive responses by its algal, meiofaunal, and nematode communities. The slower and weaker negative responses to the reverse transfer were attributed to the potentially higher resilience of periphytic communities to increases in the water level. In the shallow littoral of the lake, shading magnified the effects of phototrophic biomass erosion by waves, as the increased exposure to wave shear stress was not compensated for by an increase in photosynthesis. This finding suggests that benthic primary production will be strongly impeded in the shallow littoral zones of lakes artificially shaded by construction or embankments. However, regardless of the light constraints, an increased exposure to wave action had a generally positive short-term effect on meiofaunal density, by favoring the predominance of species able to anchor themselves to the substrate, especially the Chromadorid nematode Punctodora ratzeburgensis.  相似文献   
54.
The response of photosynthesis parameters, catalase, superoxide dismutase and peroxidase activity, malondialdehyde, proline, chlorophyll, yield and yield components to foliar application of calcium and simulated acid rain in wheat were investigated. Foliar treatment of calcium led to significant increases in the photosynthesis rate, transpiration rate, stomatal conductance, proline, chlorophyll, yield and yield components in plants subjected to acid rain. Antioxidant enzyme activity and lipid peroxidation in the wheat leaves decreased because of calcium foliar application. Calcium hindered degradation of the rubisco subunits under acid rain treatment compared with water-treated plants. Results suggest that acid rain induces the production of free radicals resulting in lipid peroxidation of the cell membrane so that significant increase in antioxidant enzyme activity was observed. In addition, photosynthetic parameters i.e. photosynthesis rate, transpiration rate and stomatal conductance were drastically suppressed by acid rain. The cellular damage caused by free radicals might be reduced or prevented by a protective metabolism including antioxidative enzymes and calcium. We report that foliar application of calcium before acid rain may ameliorate the adverse effects of acid rain in wheat plants.  相似文献   
55.
The main objective of this work is to evaluate the impact of the diurnal variation on the essential oil (EO) of Salvia officinalis and on their antioxidant, antifungal and insecticidal potentials. Obtained results showed that the chemical composition of EOs of sage varied significantly during the day. For the EO, the 7 am extract was characterized by the most significant antiradical activity. The EOs of 12 and 5 pm used at a dose of 10 μL were found to have the most effective potential to inhibit the growth of Botrytis cinerea whereas, the EO of 5 pm used at the same dose (10 μL) was the most effective against Fusarium sambucinum. For the fumigant test, the EO from 7 am had the highest activity against Spodoptera littoralis. The EO of 12 pm had the largest repellency activity against Trogoderma granarium. In addition, the EO from 7 am belongs to the repulsive class III, those of 12 and 5 pm belong to the repulsive class IV. The results of this study indicate how to optimize the best harvesting hour to obtain extracts characterized by the best yield of active compounds and by the more effective biological activity.  相似文献   
56.
Fine root length production, biomass production, and turnover in forest floor and mineral soil (0–30 cm) layers were studied in relation to irrigated (I) and irrigated-fertilized (IL) treatments in a Norway spruce stand in northern Sweden over a 2-year period. Fine roots (<1 mm) of both spruce and understory vegetation were studied. Minirhizotrons were used to estimate fine root length production and turnover, and soil cores were used to estimate standing biomass. Turnover was estimated as both the inverse of root longevity (RTL) and the ratio of annual root length production to observed root length (RTR). RTR values of spruce roots in the forest floor in I and IL plots were 0.6 and 0.5 y−1, respectively, whereas the corresponding values for RTL were 0.8 and 0.9 y−1. In mineral soil, corresponding values for I, IL, and control (C) plots were 1.2, 1.2, and 0.9 y−1 (RTR) and 0.9, 1.1, and 1 y−1 (RTL). RTR and RTL values of understory vegetation roots were 1 and 1.1 y−1, respectively. Spruce root length production in both the forest floor and the mineral soil in I plots was higher than in IL plots. The IL-treated plots gave the highest estimates of spruce fine root biomass production in the forest floor, but, for the mineral soil, the estimates obtained for the I plots were the highest. The understory vegetation fine root production in the I and IL plots was similar for both the forest floor and the mineral soil and higher (for both layers) than in C plots. Nitrogen (N) turnover in the forest floor and mineral soil layers (summed) via spruce roots in IL, I, and C plots amounted to 2.4, 2.1, and 1.3 g N m−2 y−1, and the corresponding values for field vegetation roots were 0.6, 0.5, and 0.3 g N m−2 y−1. It was concluded that fertilization increases standing root biomass, root production, and N turnover of spruce roots in both the forest floor and mineral soil. Data on understory vegetation roots are required for estimating carbon budgets in model studies.  相似文献   
57.
Measuring Fine Root Turnover in Forest Ecosystems   总被引:13,自引:1,他引:12  
Development of direct and indirect methods for measuring root turnover and the status of knowledge on fine root turnover in forest ecosystems are discussed. While soil and ingrowth cores give estimates of standing root biomass and relative growth, respectively, minirhizotrons provide estimates of median root longevity (turnover time) i.e., the time by which 50% of the roots are dead. Advanced minirhizotron and carbon tracer studies combined with demographic statistical methods and new models hold the promise of improving our fundamental understanding of the factors controlling root turnover. Using minirhizotron data, fine root turnover (y−1) can be estimated in two ways: as the ratio of annual root length production to average live root length observed and as the inverse of median root longevity. Fine root production and mortality can be estimated by combining data from minirhizotrons and soil cores, provided that these data are based on roots of the same diameter class (e.g., < 1 mm in diameter) and changes in the same time steps. Fluxes of carbon and nutrients via fine root mortality can then be estimated by multiplying the amount of carbon and nutrients in fine root biomass by fine root turnover. It is suggested that the minirhizotron method is suitable for estimating median fine root longevity. In comparison to the minirhizotron method, the radio carbon technique favor larger fine roots that are less dynamics. We need to reconcile and improve both methods to develop a more complete understanding of root turnover.  相似文献   
58.
Three hundred and eleven honeybee samples from 12 countries in the Middle East and North Africa (MENA) (Jordan, Lebanon, Syria, Iraq, Egypt, Libya, Tunisia, Algeria, Morocco, Yemen, Palestine, and Sudan) were analyzed for the presence of deformed wing virus (DWV). The prevalence of DWV throughout the MENA region was pervasive, but variable. The highest prevalence was found in Lebanon and Syria, with prevalence dropping in Palestine, Jordan, and Egypt before increasing slightly moving westwards to Algeria and Morocco Phylogenetic analysis of a 194 nucleotide section of the DWV Lp gene did not identify any significant phylogenetic resolution among the samples, although the sequences did show consistent regional clustering, including an interesting geographic gradient from Morocco through North Africa to Jordan and Syria. The sequences revealed several clear variability hotspots in the deduced amino acid sequence, which furthermore showed some patterns of regional identity. Furthermore, the sequence variants from the Middle East and North Africa appear more numerous and diverse than those from Europe.  相似文献   
59.
60.
Based on batch cultivation data for the production of L-glutamic acid from glucose, a comparative evaluation was made for repeated batch cultivations using one and more fermentors. The problem was formulated as maximizing the productivity of metabolic product with the specified conversion with respect to the cell age and the volume fraction used as seed for the subsequent repeated batch cultivation. Simulations were carried out with the assumption of no lag in product formation for the cases where the total operation time was specified as 200 h with reproducible batch cultivation cycles. The product production was assumed to be solely a function of product concentration. The computation results show the advantage of using more than one fermentor from the viewpoints of productivity and conversion, which will apply in general to non-growth-associated product production with delay time. In particular, three fermentors are recommended for the production of L-glutamic acid chosen as an example in this article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号