首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8032篇
  免费   509篇
  2023年   79篇
  2022年   63篇
  2021年   140篇
  2020年   123篇
  2019年   142篇
  2018年   347篇
  2017年   297篇
  2016年   362篇
  2015年   308篇
  2014年   367篇
  2013年   598篇
  2012年   619篇
  2011年   608篇
  2010年   419篇
  2009年   314篇
  2008年   225篇
  2007年   204篇
  2006年   225篇
  2005年   104篇
  2004年   97篇
  2003年   93篇
  2002年   67篇
  2001年   103篇
  2000年   106篇
  1999年   123篇
  1998年   91篇
  1997年   90篇
  1996年   83篇
  1995年   97篇
  1994年   89篇
  1993年   63篇
  1992年   74篇
  1991年   82篇
  1990年   58篇
  1989年   71篇
  1987年   66篇
  1986年   58篇
  1985年   77篇
  1984年   62篇
  1983年   75篇
  1982年   67篇
  1981年   83篇
  1980年   57篇
  1979年   76篇
  1978年   60篇
  1977年   68篇
  1974年   56篇
  1973年   52篇
  1970年   52篇
  1969年   61篇
排序方式: 共有8541条查询结果,搜索用时 16 毫秒
161.
162.
The current approaches to the study of clonal plants are reviewed. Most studies concentrate at the level of the ramet and clonal fragment exploring the “microscopic” view of clonal plants, dealing with the translocation of resources, clonal integration, plasticity of growth etc. The information gained, by this approach can be used in the understanding of higher levels of organization within the clonal system either with the help of spatially explicit modelling techniques, or by using means and distributions of size within a population instead of studying individual ramets separately. Plant scientists use the term clone with two meanings, viz. (a) a set of physiologically connected, but potentially independent ramets, and (b) a set of genetically identical, but potentially physically separated individuals. The overlap of these terms differs between individual plant species, depending on the extent of physical separation of the ramets and the degree of physiological integration between the ramets; the lower the frequency of ramet separation, the closer are the physiological and genetic concepts of the clone. Three critical areas seem to be neglected in clonal plant research: (a) the interrelationship between hierarchical levels in clonal plants, (b) the particular spatial structure of their environment, and (c) the importance of clonal plants in different ecological communities.  相似文献   
163.
Development of bacterioplankton was studied by manipulation of planktivorous fish and/or nutrients in experimental enclosures in a fish pond. Grazing pressure exerted by large zooplankton (Daphnia galeata and Daphnia pulicaria) strongly influenced the counts and size distribution of bacterial populations. Morphometric analyses by scanning electron microscope revealed a shift in size distribution from larger mainly rod-type bacteria under low grazing pressure towards smaller mainly coccus-type under strong grazing pressure. The metabolic activity of bacteria measured as glucose uptake was higher under strong grazing pressure. After removal of large daphnids, the increase in bacterial density was probably the result of two additive factors: low grazing pressure and high level of dissolved organic matter (DOM) due to photosynthetic activity of more abundant algae. Composition of bacterial populations shifted toward larger, rod-type bacteria, and their metabolic efficiency measured by uptake, was lowered. The basic dimensionality of the system and interactions between variables was describe by R-mode factor analysis. The manipulated enclosures were relate with factor score.  相似文献   
164.
Summary The interaction ofActinia equina equinatoxin II (EqT-II) with human red blood cells (HRBC) and with model lipid membranes was studied. It was found that HRBC hemolysis by EqT-II is the result of a colloid-osmotic shock caused by the opening of toxin-induced ionic pores. In fact, hemolysis can be prevented by osmotic protectants of adequate size. The functional radius of the lesion was estimated to be about 1.1 nm. EqT-II increased also the permeability of calcein-loaded lipid vesicles comprised of different phospholipids. The rate of permeabilization rised when sphingomyelin was introduced into the vesicles, but it was also a function of the pH of the medium, optimum activity being between pH 8 and 9; at pH 10 the toxin became markedly less potent. From the dose-dependence of the permeabilization it was inferred that EqT-II increases membrane permeability by forming oligomeric channels comprising several copies of the cytolysin monomer. The existence of such oligomers was directly demonstrated by chemical cross-linking. Addition of EqT-II to one side of a planar lipid membrane (PLM) increases the conductivity of the film in discrete steps of defined amplitude indicating the formation of cation-selective channels. The conductance of the channel is consistent with the estimated size of the lesion formed in HRBC. High pH and sphingomyelin promoted the interaction even in this system. Chemical modification of lysine residues or carboxyl groups of this protein changed the conductance, the ion selectivity and the current-voltage characteristic of the pore, suggesting that both these groups were present in its lumen.  相似文献   
165.
The efficiency ofAgrobacterium-based transformation technique in oilseed rape and cauliflower was influenced by cultivar specificity, donor plant age and explant type. Marked differences in demands for plant hormone contents in the regeneration medium were recorded already among different types of nontransformed explants. The highest regeneration capacity was recorded with stem and leaf segments isolated from one-month-old aseptically grown plants. The regeneration was markedly species-dependent. Regeneration of transformed plants from stem segments and thin layers isolated from field-grown oilseed rape plants (at the most 2% of regenerating explants) and from oilseed rape hypocotyls (0.8% of regenerating explants) and cauliflower (1.2% of explant regenerated transformed shoots) was achieved after disarmedAgrobacterium treatment. Hypersensitive reaction of explants could be prevented by using prolongedin vitro precultivation and delayed application of the selective agent.  相似文献   
166.
The coenzyme-independent dihydroorotate dehydrogenase (EC 1.3.3.1) linking the pyrimidine biosynthetic pathway to the respiratory chain, was ultracytochemically localized by the tetrazolium method in derepressed exponential-phase cultures ofSaccharomyces cerevisiae. Biochemical analysis showed a considerable variation of this enzyme activity in inverse proportion to the aeration of the yeast cultures. The assay also showed that after prefixation of yeast cells with 1% glutaraldehyde at 0°C for 20 min, approximately one-half of the enzyme activity was preserved. The cytochemical reaction mixture contained dihydroorotate (2 mmol/L), thiocarbamyl nitroblue tetrazolium (0.44 mmol/L), phenazine methosulfate (0.16 mmol/L) and KCN (1.7 mmol/L) in Tris-HCl buffer (100 mmol/L) of pH 8.0. The osmicated formazan deposits featured envelopes of mitochondria and of nuclei and were prominent in the mitochondrial inclusions and in the vacuolar membranes. The latter sites of dihydroorotate dehydrogenase activity represent biosynthetic activity in yeast vacuoles, still generally assumed to function as yeast lysosomes and storage organelles. In the light of the generally observed invasions of juvenile yeast vacuoles into mitochondria, the enzymic sites observed in mitochondrial inclusion were considered as evidence of the interactions of yeast vacuoles and mitochondria. Transfer of vacuolar membranes with dihydroorotate dehydrogenase activity into mitochondrial matrix is suggested.  相似文献   
167.
Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity. To systematically assess potential drivers of non-stationarity, we compiled tree-ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non-linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non-stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non-stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non-stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non-stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non-stationarity compared with monthly-resolved non-linear models. We conclude that non-stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non-stationarity, we recommend that temporal non-stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.  相似文献   
168.
In a world of accelerating changes in environmental conditions driving tree growth, tradeoffs between tree growth rate and longevity could curtail the abundance of large old trees (LOTs), with potentially dire consequences for biodiversity and carbon storage. However, the influence of tree-level tradeoffs on forest structure at landscape scales will also depend on disturbances, which shape tree size and age distribution, and on whether LOTs can benefit from improved growing conditions due to climate warming. We analyzed temporal and spatial variation in radial growth patterns from ~5000 Norway spruce (Picea abies [L.] H. Karst) live and dead trees from the Western Carpathian primary spruce forest stands. We applied mixed-linear modeling to quantify the importance of LOT growth histories and stand dynamics (i.e., competition and disturbance factors) on lifespan. Finally, we assessed regional synchronization in radial growth variability over the 20th century, and modeled the effects of stand dynamics and climate on LOTs recent growth trends. Tree age varied considerably among forest stands, implying an important role of disturbance as an age constraint. Slow juvenile growth and longer period of suppressed growth prolonged tree lifespan, while increasing disturbance severity and shorter time since last disturbance decreased it. The highest age was not achieved only by trees with continuous slow growth, but those with slow juvenile growth followed by subsequent growth releases. Growth trend analysis demonstrated an increase in absolute growth rates in response to climate warming, with late summer temperatures driving the recent growth trend. Contrary to our expectation that LOTs would eventually exhibit declining growth rates, the oldest LOTs (>400 years) continuously increase growth throughout their lives, indicating a high phenotypic plasticity of LOTs for increasing biomass, and a strong carbon sink role of primary spruce forests under rising temperatures, intensifying droughts, and increasing bark beetle outbreaks.  相似文献   
169.
David W. Kikuchi  William L. Allen  Kevin Arbuckle  Thomas G. Aubier  Emmanuelle S. Briolat  Emily R. Burdfield-Steel  Karen L. Cheney  Klára Daňková  Marianne Elias  Liisa Hämäläinen  Marie E. Herberstein  Thomas J. Hossie  Mathieu Joron  Krushnamegh Kunte  Brian C. Leavell  Carita Lindstedt  Ugo Lorioux-Chevalier  Melanie McClure  Callum F. McLellan  Iliana Medina  Viraj Nawge  Erika Páez  Arka Pal  Stano Pekár  Olivier Penacchio  Jan Raška  Tom Reader  Bibiana Rojas  Katja H. Rönkä  Daniela C. Rößler  Candy Rowe  Hannah M. Rowland  Arlety Roy  Kaitlin A. Schaal  Thomas N. Sherratt  John Skelhorn  Hannah R. Smart  Ted Stankowich  Amanda M. Stefan  Kyle Summers  Christopher H. Taylor  Rose Thorogood  Kate Umbers  Anne E. Winters  Justin Yeager  Alice Exnerová 《Journal of evolutionary biology》2023,36(7):975-991
Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such “defence portfolios” that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of specific sensory systems (e.g., visual) or specific types of defences (especially aposematism). In this review, we aim to build a comprehensive framework for conceptualizing the evolution of multiple prey defences, beginning with hypotheses for the evolution of multiple defences in general, and defence portfolios in particular. We then examine idealized models of resource trade-offs and functional interactions between traits, along with evidence supporting them. We find that defence portfolios are constrained by resource allocation to other aspects of life history, as well as functional incompatibilities between different defences. We also find that selection is likely to favour combinations of defences that have synergistic effects on predator behaviour and prey survival. Next, we examine specific aspects of prey ecology, genetics and development, and predator cognition that modify the predictions of current hypotheses or introduce competing hypotheses. We outline schema for gathering data on the distribution of prey defences across species and geography, determining how multiple defences are produced, and testing the proximate mechanisms by which multiple prey defences impact predator behaviour. Adopting these approaches will strengthen our understanding of multiple defensive strategies.  相似文献   
170.
Many prey species change their antipredator defence during ontogeny, which may be connected to different potential predators over the life cycle of the prey. To test this hypothesis, we compared reactions of two predator taxa – spiders and birds – to larvae and adults of two invasive true bug species, Oxycarenus hyalinipennis and Oxycarenus lavaterae (Heteroptera: Oxycarenidae) with life-stage-specific chemical defence mechanisms. The reactions to larvae and adults of both true bug species strikingly differed between the two predator taxa. The spiders were deterred by the defences of adult bugs, but the larval defences were ineffective against them. By contrast, birds attacked the larvae considerably less often than the adult bugs. The results indicate a predator-specific ontogenetic change in defence effectiveness of both Oxycarenus species. The change in defence is likely linked to the life-stage-specific composition of secretions in both species: whereas secretions of larvae are dominated by unsaturated aldehydes, secretions of adults are rich in terpenoids, which probably serve dual function of defensive chemicals and pheromones. Our results highlight the variation in defence between different life stages and the importance of testing responses of different types of predators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号