首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   21篇
  2023年   1篇
  2022年   6篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   11篇
  2015年   13篇
  2014年   11篇
  2013年   13篇
  2012年   20篇
  2011年   28篇
  2010年   15篇
  2009年   8篇
  2008年   11篇
  2007年   13篇
  2006年   12篇
  2005年   12篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1966年   1篇
排序方式: 共有272条查询结果,搜索用时 421 毫秒
121.
Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨ(m)) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨ(m) was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer.  相似文献   
122.
Sperm cells exhibit extremely high sensitivity in response to slight changes in temperature, osmotic pressure and/or presence of various chemical stimuli. In most cases throughout the evolution, these physico-chemical stimuli trigger Ca2+-signaling and subsequently alter structure, cellular function, motility and survival of the sperm cells. Few reports have recently demonstrated the presence of Transient Receptor Potential (TRP) channels in the sperm cells from higher eukaryotes, mainly from higher mammals. In this work, we have explored if the sperm cells from lower vertebrates can also have thermo-sensitive TRP channels. In this paper, we demonstrate the endogenous presence of one specific thermo-sensitive ion channel, namely Transient Receptor Potential Vanilloid family member sub type 1 (TRPV1) in the sperm cells collected from fresh water teleost fish, Labeo rohita. By using western blot analysis, fluorescence assisted cell sorting (FACS) and confocal microscopy; we confirm the presence of this non-selective cation channel. Activation of TRPV1 by an endogenous activator NADA significantly increases the quality as well as the duration of fish sperm movement. The sperm cell specific expression of TRPV1 matches well with our in silico sequence analysis. The results demonstrate that TRPV1 gene is conserved in various fishes, ranging from 1–3 in copy number, and it originated by fish-specific duplication events within the last 320 million years (MY). To the best of our knowledge, this is the first report demonstrating the presence of any thermo-sensitive TRP channels in the sperm cells of early vertebrates as well as of aquatic animals, which undergo external fertilization in fresh water. This observation may have implications in the aquaculture, breeding of several fresh water and marine fish species and cryopreservation of fish sperms.  相似文献   
123.
Crude decoction of Chenopodium album seed showed spermicidal effect at MIC 2 mg/ml in earlier studies. Systematic isolation, characterization and evaluation revealed that the major metabolite Desgalactotigonin (DGT) is the most effective principle in both in vitro and in vivo studies. The in vitro studies comprises (a) rat and human sperm motility and immobilizing activity by Sander-Cramer assay; (b) sperm membrane integrity was observed by HOS test and electron microscopy; (c) microbial potential was examined in Lactobacillus broth culture, and (d) the hemolytic index was determined by using rat RBCs. The in vivo contraceptive efficacy was evaluated by intra uterine application of DGT in rat. Lipid peroxidation and induction of apoptosis by DGT on human spermatozoa were also studied. The minimum effective concentration (MEC) of DGT that induced instantaneous immobilization in vitro was 24.18 µM for rat and 58.03 µM for human spermatozoa. Microbial study indicated DGT to be friendly to Lactobacillus acidophilus. Implantation was prevented in DGT treated uterine horn while no hindrance occurred in the untreated contra lateral side. At the level of EC50, DGT induced apoptosis in human spermatozoa as determined by increased labeling with Annexin-V and decreased polarization of sperm mitochondria. Desgalactotigonin emerged 80 and 2×104 times more potent than the decoction and Nonoxynol-9 respectively. It possesses mechanism based detrimental action on both human and rat spermatozoa and spares lactobacilli and HeLa cells at MEC which proves its potential as a superior ingredient for the formulation of a contraceptive safer/compatible to vaginal microflora.  相似文献   
124.
The cobras Naja naja and N. kaouthia are abundant in eastern and north-eastern India, accounting for maximum snakebite deaths. Here we report on variation in the composition of Naja kaouthia and N. naja venom from eastern India on corresponding differences in the severity of pathogenesis. These two venoms differ in chromatographic elution profile through Sephadex G-50 and enzyme activity, protein and carbohydrate contents associated with each fraction. The presence of greater amounts of basic phospholipase A2, L-amino acid oxidase and low molecular weight membrane active polypeptides in the N. naja venom makes it more toxic than N. kaouthia venom. A commercial polyvalent antivenom raised against N. naja venom inactivates lethality and variety of toxic effects of homologous venom more effectively than N. kaouthia venom.  相似文献   
125.
Etanercept is a soluble tumor necrosis factor (TNF) receptor originally approved for treatment of moderate-to-severe rheumatoid arthritis, juvenile rheumatoid arthritis, and psoriatic arthritis. We have developed a non-innovator version of the recombinant protein etanercept, with the investigational name AVG01 (trade name AVENT™), using a novel expression vector-based technology. Here we show, by extensive analytical characterization, that AVG01 is highly similar to the reference product Enbrel® and demonstrates similar efficacy in pre-clinical studies.  相似文献   
126.
127.
Hidden genetic variations have the potential to lead to the evolution of new traits. Molecular chaperones, which assist protein folding, may conceal genetic variations in protein-coding regions. Here we investigate whether the chemical milieu of cells has the potential to alleviate intracellular protein folding, a possibility that could implicate osmolytes in concealing genetic variations. We found that the model osmolyte trimethylamine N-oxide (TMAO) can buffer mutations that impose kinetic traps in the folding pathways of two model proteins. Using this information, we rationally designed TMAO-dependent mutants in vivo, starting from a TMAO-independent protein. We show that different osmolytes buffer a unique spectrum of mutations. Consequently, the chemical milieu of cells may alter the folding pathways of unique mutant variants in polymorphic populations and lead to unanticipated spectra of genetic buffering.  相似文献   
128.

Background

Treatment of metastatic prostate cancer (PCa) with single agents has shown only modest efficacy. We hypothesized dual inhibition of different pathways in PCa results in improved tumor inhibition. The Src family kinases (SFK) and insulin-like growth factor-1 (IGF-1) signaling axes are aberrantly activated in both primary PCa and bone metastases and regulate distinct and overlapping functions in PCa progression. We examined the antitumor effects of combined inhibition of these pathways.

Materials and Methods

Src andIGF-1 receptor (IGF-1R) inhibition was achieved in vitro by short hairpin (sh)RNA and in vitro and in vivo by small molecule inhibitors (dasatinib and BMS-754807, against SFK and IGF-1R/Insulin Receptor(IR), respectively).

Results

In vitro, inhibition of IGF-1 signaling affected cell survival and proliferation. SFK blockade alone had modest effects on proliferation, but significantly enhanced the IGF-1R blockade. These findings correlated with a robust inhibition of IGF-1-induced Akt1 phophorylation by dasatinib, whereas Akt2 phosphorylation was SFK independent and only inhibited by BMS-754807. Thus, complete inhibition of both Akt genes, not seen by either drug alone, is likely a major mechanism for the decreased survival of PCa cells. Furthermore, dasatinib and BMS-754807 inhibited in vivo growth of the primary human xenograft MDA PCa 133, with corresponding inhibition of Akt in tumors. Also, both orthotopic and intratibial tumor growth of PC-3 cells were more potently inhibited by dual SFK and IGF-1R/IR blockade compared to either pathway alone, with a corresponding decrease in bone turnover markers.

Conclusions

Dual IGF-1R/IR and SFK inhibition may be a rational therapeutic approach in PCa by blocking both independent and complementary processes critical to tumor growth.  相似文献   
129.
ChaC1 is a mammalian proapoptic protein of unknown function induced during endoplasmic reticulum stress. We show using in vivo studies and novel in vitro assays that the ChaC family of proteins function as γ‐glutamyl cyclotransferases acting specifically to degrade glutathione but not other γ‐glutamyl peptides. The overexpression of these proteins (but not the catalytically dead E>Q mutants) led to glutathione depletion and enhanced apoptosis in yeast. The ChaC family is conversed across all phyla and represents a new pathway for glutathione degradation in living cells, and the first cytosolic pathway for glutathione degradation in mammalian cells.  相似文献   
130.

Background  

The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号