首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   25篇
  352篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   7篇
  2018年   9篇
  2017年   10篇
  2016年   13篇
  2015年   19篇
  2014年   28篇
  2013年   31篇
  2012年   31篇
  2011年   31篇
  2010年   18篇
  2009年   16篇
  2008年   20篇
  2007年   18篇
  2006年   18篇
  2005年   15篇
  2004年   12篇
  2003年   11篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   1篇
  1993年   2篇
  1987年   1篇
  1976年   1篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
341.
Journal of Physiology and Biochemistry - Despite the general relationship between obesity and its co-morbidities, there are both obese individuals who scarcely present the associated pathologies...  相似文献   
342.
It has been demonstrated that glutamatergic activity induces ascorbic acid (AA) depletion in astrocytes. Additionally, different data indicate that AA may inhibit glucose accumulation in primary cultures of rat hippocampal neurons. Thus, our hypothesis postulates that AA released from the astrocytes during glutamatergic synaptic activity may inhibit glucose uptake by neurons. We observed that cultured neurons express the sodium-vitamin C cotransporter 2 and the facilitative glucose transporters (GLUT) 1 and 3, however, in hippocampal brain slices GLUT3 was the main transporter detected. Functional activity of GLUTs was confirmed by means of kinetic analysis using 2-deoxy-d-glucose. Therefore, we showed that AA, once accumulated inside the cell, inhibits glucose transport in both cortical and hippocampal neurons in culture. Additionally, we showed that astrocytes are not affected by AA. Using hippocampal slices, we observed that upon blockade of monocarboxylate utilization by alpha-cyano-4-hydroxycinnamate and after glucose deprivation, glucose could rescue neuronal response to electrical stimulation only if AA uptake is prevented. Finally, using a transwell system of separated neuronal and astrocytic cultures, we observed that glutamate can reduce glucose transport in neurons only in presence of AA-loaded astrocytes, suggesting the essential role of astrocyte-released AA in this effect.  相似文献   
343.
Endothelial dysfunction plays an essential role in the development and progression of atherosclerotic lesions. Endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) are considered important molecules in the endothelial dysfunction process. The aim of the present study was to evaluate the role of eNOS and ET-1 (EDN1) gene polymorphisms as susceptibility markers for acute coronary syndrome (ACS). Six polymorphisms (rs1799983, rs2070744, rs1800783, rs3087459, rs1800541, and rs5369) of eNOS and EDN1 genes were analyzed by 5′ exonuclease TaqMan genotyping assays in a group of 452 patients with ACS and 283 healthy controls. The results showed increased frequencies of the A allele of the END1-914 C>A (rs3087459) polymorphism in ACS patients when compared to controls (OR = 1.56, Pc = 0.01). Under an additive model, the “AA” genotype was associated with an increased risk of developing ACS, adjusted for gender, hypertension, dyslipidemia, alcohol consumption, smoking, and diabetes (OR = 1.56, p = 0.045). Linkage disequilibrium analysis showed one EDN1 haplotype (AT) with increased frequency in ACS patients when compared to healthy controls (OR = 1.65, Pc = 0.0015). The “AT” haplotype was associated with the risk of developing ACS after adjusting for cardiovascular risk factors using multiple logistic analysis. In this case, the adjusted OR was 1.73 for the AT haplotype (Pc = 0.0018). In summary, resulting data suggest that the END1-914 C>A gene polymorphism could be involved in the risk of developing ACS in Mexican individuals.  相似文献   
344.
345.
Diagnosis of invasive pulmonary aspergillosis (IPA) is challenging. The objective of the study was to assess the value of microbiological tests to the diagnosis of IPA in the absence of non-specific radiological data. A retrospective study of 23 patients with suspicion of IPA and positivity of some microbiological diagnostic tests was performed. These tests included conventional microbiological culture, detection of Aspergillus galactomannan (GM) antigen and in some patients (1 → 3)-β-d-glucan (BDG) and Aspergillus fumigatus DNA using the LightCycler® SeptiFast test. In 10 patients with hematological malignancy, 6 cases were considered ‘probable’ and 4 ‘non-classifiable.’ In 8 patients with chronic lung disease, 7 cases were classified as ‘probable’ and 1 as ‘proven,’ and in 5 patients with prolonged ICU stay (>7 days), there were 2 ‘proven’ cases, 2 ‘non-classifiable’ and 1 putative case. Microbiological culture was positive in 17 cases and 18 Aspergillus spp. were isolated (one mixed culture). A. fumigatus was the most frequent (44.4%) followed by A. tubingensis. The Aspergillus galactomannan (GM) antigen assay was positive in 21 cases (91.3%). The GM antigen and the (1 → 3)-β-d-glucan (BDG) assays were both performed in 12 cases (52.2%), being positive in 9. The SeptiFast test was performed in 7 patients, being positive in 4. In patients with non-classifiable pulmonary aspergillosis and one or more positive microbiological tests, radiological criteria may not be considered a limiting factor for the diagnosis of IPA.  相似文献   
346.
Wine yeasts were isolated from fermenting Garnatxa and Xarel.lo musts fermented in a newly built and operated winery between 1995 and 2000. The species of non-Saccharomyces yeasts and the Saccharomyces cerevisiae strains were identified by ribosomal DNA and mitochondrial DNA RFLP analysis respectively. Non-Saccharomyces yeasts, particularly Hanseniaspora uvarum and Candida stellata, dominated the first stages of fermentation. However Saccharomyces cerevisiae was present at the beginning of the fermentation and was the main yeast in the musts in one vintage (1999). In all the cases, S. cerevisiae took over the process in the middle and final stages of fermentation. The analysis of the S. cerevisiae strains showed that indigenous strains competed with commercial strains inoculated in other fermentation tanks of the cellar. The continuous use of commercial yeasts reduced the diversity and importance of the indigenous S. cerevisiae strains.  相似文献   
347.
Mammalian phase II metabolism of dietary plant flavonoid compounds generally involves substitution with glucuronic acid. In contrast, flavonoids mainly exist as glucose conjugates in plants, and few plant UDP-glucuronosyltransferase enzymes have been identified to date. In the model legume Medicago truncatula, the major flavonoid compounds in the aerial parts of the plant are glucuronides of the flavones apigenin and luteolin. Here we show that the M. truncatula glycosyltransferase UGT84F9 is a bi-functional glucosyl/glucuronosyl transferase in vitro, with activity against a wide range of flavonoid acceptor molecules including flavones. However, analysis of metabolite profiles in leaves and roots of M. truncatula ugt84f9 loss of function mutants revealed that the enzyme is essential for formation of flavonoid glucuronides, but not most flavonoid glucosides, in planta. We discuss the use of plant UGATs for the semi-synthesis of flavonoid phase II metabolites for clinical studies.

UGT84F9 is a bifunctional glucuronosyltransferase/glucosyltransferase that is necessary for the glucuronidation of a wide range of flavonoid natural products in Medicago truncatula.  相似文献   
348.
The long-time effect of phosphinothricin (PPT) on gas exchange and nitrate metabolism in intact plants of lucerne ( Medicago sativa L. cv. Aragón) was investigated. Photosynthetic CO2 uptake, stomatal conductance, and transpiration were measured with an Infra-Red Gas Analyzer (IRGA). Under photorespiratory conditions, CO2 uptake continuously decreased after PPT treatment. The decrease of photosynthesis led to an increase in the internal CO2 concentration, which in turn caused stomatal closure and a reduction of transpiration rate. Nitrate reduction from plants sprayed with PPT was assayed both in vitro and in vivo. In vivo nitrate reductase was measured with and without nitrate in the infiltration medium. Both types of nitrate reductase assays indicated that the enzyme was inhibited in plants treated with PPT; however, the enzyme appeared more affected when the in vivo assay was used than when the one in vitro was applied. The nitrate reduction was pronouncedly affected after 24 h of PPT treatment, when glutamine synthetase (GS, EC 6.3.1.2.) activity and gas exchange were inhibited by more than 60%. The data suggest that the inhibition of GS leads to inhibition of photosynthesis, which, in turn, means lack of NADPH and nitrate, the substrates for nitrate reductase. The inhibition of GS also leads to a high ammonia level, which will produce a secondary inhibition of nitrate reductase activity.  相似文献   
349.
350.
Previous studies have indicated that the rate of photorespiration in C4 plants is low or negligible. In this study, wild-type and mutant leaves of the C4 plant Amaranthus edulis were treated with the glutamine synthetase inhibitor, phosphinothricin and the glycine decarboxylase inhibitor, aminoacetonitrile, at different concentrations of CO2. The time course of ammonia accumulation in leaves of the wild type was compared with a mutant lacking phosphoenolpyruvate carboxylase activity (EC 4.1.1.31), and with three different mutants that accumulated glycine. The increase in the concentration of ammonia in the leaves, stimulated by the treatments was used as a measurement of the rate of photorespiration in C4 plants. The application of glutamine and glycine maintained the rate of photorespiratory ammonia production for a longer period in the wild type, and increased the rate in a mutant lacking phosphoenolpyruvate carboxylase suggesting that there was a lack of amino donors in these plants. The calculated rate of photorespiration in Amaranthus edulis wild-type leaves when the supply of amino donors was enough to maintain the photorespiratory nitrogen flow, accounted for approximately 6% of the total net photosynthetic CO2 assimilation rate. In a mutant lacking phosphoenolpyruvate carboxylase, however, this rate increased to 48%, when glutamine was fed to the leaf, a value higher than that found in some C3 plants. In mutants of Amaranthus edulis that accumulated glycine, the rate of photorespiration was reduced to 3% of the total net CO2 assimilation rate. The rate of ammonia produced during photorespiration was 60% of the total produced by all metabolic reactions in the leaves. The data suggests that photorespiration is an active process in C4 plants, which can play an important role in photosynthetic metabolism in these plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号