首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1544篇
  免费   177篇
  2022年   12篇
  2021年   50篇
  2020年   27篇
  2019年   36篇
  2018年   37篇
  2017年   34篇
  2016年   61篇
  2015年   73篇
  2014年   71篇
  2013年   88篇
  2012年   112篇
  2011年   99篇
  2010年   52篇
  2009年   51篇
  2008年   78篇
  2007年   67篇
  2006年   62篇
  2005年   65篇
  2004年   49篇
  2003年   51篇
  2002年   56篇
  2001年   37篇
  2000年   46篇
  1999年   24篇
  1998年   17篇
  1997年   29篇
  1996年   22篇
  1995年   13篇
  1994年   17篇
  1993年   11篇
  1992年   23篇
  1991年   30篇
  1990年   22篇
  1989年   21篇
  1988年   18篇
  1987年   21篇
  1986年   19篇
  1985年   12篇
  1984年   14篇
  1983年   8篇
  1982年   7篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1977年   4篇
  1975年   11篇
  1973年   6篇
  1972年   4篇
  1969年   4篇
  1968年   6篇
排序方式: 共有1721条查询结果,搜索用时 31 毫秒
981.
982.
Coronavirus disease (COVID-19), caused by SARS-CoV-2, leads to symptoms ranging from asymptomatic disease to death. Although males are more susceptible to severe symptoms and higher mortality due to COVID-19, patient sex has rarely been examined. Sex-associated metabolic changes may implicate novel biomarkers and therapeutic targets to treat COVID-19. Here, using serum samples, we performed global metabolomic analyses of uninfected and SARS-CoV-2-positive male and female patients with severe COVID-19. Key metabolic pathways that demonstrated robust sex differences in COVID-19 groups, but not in controls, involved lipid metabolism, pentose pathway, bile acid metabolism, and microbiome-related metabolism of aromatic amino acids, including tryptophan and tyrosine. Unsupervised statistical analysis showed a profound sexual dimorphism in correlations between patient-specific clinical parameters and their global metabolic profiles. Identification of sex-specific metabolic changes in severe COVID-19 patients is an important knowledge source for researchers striving for development of potential sex-associated biomarkers and druggable targets for COVID-19 patients.Subject terms: Metabolomics, Immunological disorders  相似文献   
983.
Based on amino-terminal sequencing and mass spectrometry data on the Rhizopus homothallicus lipase extracted using solid (SSF) and submerged state fermentation (SmF) methods, we previously established that the two enzymes were identical. Differences were observed, however, in terms of the specific activity of these lipases and their inhibition by diethyl p-nitrophenyl phosphate (E600). The specific activity of the SSF lipase (10,700 μmol/min/mg) was found to be 1.2-fold that of SmF lipase (8600 μmol/min/mg). These differences might be the result of residual Triton X-100 molecules interacting with the SSF lipase. To check this hypothesis, the SmF lipase was incubated with submicellar concentrations of Triton X-100. The specific activity of the lipase increased after this treatment, reaching similar values to those measured with the SSF lipase. Preincubating SSF and SmF lipases with E600 at a molar excess of 100 for 1 h resulted in 80% and 60% enzyme inhibition levels, respectively. When the SmF lipase was preincubated with Triton X-100 for 1 h at a concentration 100 times lower than the Trition X-100 critical micellar concentration, the inhibition of the lipase by E600 increased from 60% to 80%. These results suggest that residual detergent monomers interacting with the enzyme may after the kinetic properties of the Rh. homothallicus lipase.  相似文献   
984.
The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.  相似文献   
985.
Drug delivery systems are designed to improve therapy efficacy as well as patient compliance. This could be accomplished by specifically targeting a medication intact to its active site, therefore reducing side-effects and enabling high local drug concentrations. Silica nanoparticles have gained ground in the biomedical field for their biocompatibility and biodegradability, being themselves inert and stable, thus enabling a variety of formulation designs for application in the pharmaceutical industry. This paper is a review of the recent patents on the applications of silica nanoparticles for drug delivery and their preparation. The review will focus on the different techniques available to obtain silica nanoparticles with variable morphology and their drug targeting applications, providing an overview of silica particles synthesis described in the literature.  相似文献   
986.
Embryonic stem cells alone are able to support fetal development in the mouse   总被引:48,自引:0,他引:48  
The developmental potential of embryonic stem (ES) cells versus 3.5 day inner cell mass (ICM) was compared after aggregation with normal diploid embryos and with developmentally compromised tetraploid embryos. ES cells were capable of colonizing somatic tissues in diploid aggregation chimeras but less efficiently than ICMs of the same genotype. When ICM in equilibrium with tetraploid and ES in equilibrium with tetraploid chimeras were made, the newborns were almost all completely ICM- or ES-derived, as judged by GPI isozyme analysis, but tetraploid cells were found in the yolk sac endoderm and trophectoderm lineage. Investigation of ES contribution in 13.5 day ES in equilibrium with tetraploid chimeras by DNA in situ hybridization confirmed the complete tetraploid origin of the placenta (except the fetal blood and blood vessels) and the yolk sac endoderm. However, the yolk sac mesoderm, amnion and fetus contained only ES-derived cells. ES-derived newborns failed to survive after birth, although they had normal birthweight and anatomically they appeared normal. This phenomenon remains unexplained at the moment. The present results prove that ES cells are able to support complete fetal development, resulting in ES-derived newborns, and suggest a useful route for studying the development of genetically manipulated ES cells in all fetal lineages.  相似文献   
987.
988.
The two major mammalian sialic acids are N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). The only known biosynthetic pathway generating Neu5Gc is the conversion of CMP-N-acetylneuraminic acid into CMP-Neu5Gc, which is catalyzed by the CMP-Neu5Ac hydroxylase enzyme. Given the irreversible nature of this reaction, there must be pathways for elimination or degradation of Neu5Gc, which would allow animal cells to adjust Neu5Gc levels to their needs. Although humans are incapable of synthesizing Neu5Gc due to an inactivated CMAH gene, exogenous Neu5Gc from dietary sources can be metabolically incorporated into tissues in the face of an anti-Neu5Gc antibody response. However, the metabolic turnover of Neu5Gc, which apparently prevents human cells from continued accumulation of this immunoreactive sialic acid, has not yet been elucidated. In this study, we show that pre-loaded Neu5Gc is eliminated from human cells over time, and we propose a conceivable Neu5Gc-degrading pathway based on the well studied metabolism of N-acetylhexosamines. We demonstrate that murine tissue cytosolic extracts harbor the enzymatic machinery to sequentially convert Neu5Gc into N-glycolylmannosamine, N-glycolylglucosamine, and N-glycolylglucosamine 6-phosphate, whereupon irreversible de-N-glycolylation of the latter results in the ubiquitous metabolites glycolate and glucosamine 6-phosphate. We substantiate this finding by demonstrating activity of recombinant human enzymes in vitro and by studying the fate of radiolabeled pathway intermediates in cultured human cells, suggesting that this pathway likely occurs in vivo. Finally, we demonstrate that the proposed degradative pathway is partially reversible, showing that N-glycolylmannosamine and N-glycolylglucosamine (but not glycolate) can serve as precursors for biosynthesis of endogenous Neu5Gc.  相似文献   
989.
The ultrastructure of the ring gland (corpus cardiacum (CC), prothoracic gland (PG) and corpus allatum (CA)) was examined in diapausing and nondiapausing flesh fly pupae. The diapause developmental state, which is environmentally regulated and coordinated by the brain-ring gland complex, is associated with differences in the ultrastructure of PG and CA cells but not in the CC. During diapause the PG and CA cells have extensive arrays of rough endoplasmic reticulum and spherical mitochondria. The PG cells also contain lipid droplets surrounded by an electron dense amorphous coat not seen in PG cells from nondiapausing pupae. In nondiapausing pupae, the PG and CA cells contain large amounts of ribosomes throughout the cytoplasm but very little rough endoplasmic reticulum and elongated mitochondria. The fact that ring glands from diapausing pupae readily incorporate (35)S-methioninc indicates that the gland is actively synthesizing proteins, thus the contrasts in ring gland ultrastructure are not due to cellular quiescence during diapause but reflect fundamental cellular and physiological differences between the diapause and nondiapause developmental program.  相似文献   
990.
Genomic microarrays in the spotlight   总被引:18,自引:0,他引:18  
Microarray-based comparative genomic hybridization (array-CGH) has emerged as a revolutionary platform, enabling the high-resolution detection of DNA copy number aberrations. In this article we outline the use and limitations of genomic clones, cDNA clones and PCR products as targets for genomic microarray construction. Furthermore, the applications and future aspects of these arrays for DNA copy number analysis in research and diagnostics, epigenetic profiling and gene annotation are discussed. These recent developments of genomic microarrays mark only the beginning of a new generation of high-resolution and high-throughput tools for genetic analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号