首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1109篇
  免费   28篇
  2015年   22篇
  2014年   17篇
  2013年   30篇
  2012年   29篇
  2011年   20篇
  2010年   39篇
  2009年   24篇
  2008年   35篇
  2007年   49篇
  2006年   22篇
  2005年   28篇
  2004年   18篇
  2003年   13篇
  2002年   22篇
  2001年   11篇
  2000年   14篇
  1999年   19篇
  1997年   21篇
  1996年   15篇
  1995年   14篇
  1994年   12篇
  1993年   18篇
  1992年   13篇
  1991年   20篇
  1990年   18篇
  1989年   14篇
  1988年   13篇
  1987年   20篇
  1986年   16篇
  1985年   11篇
  1984年   13篇
  1982年   15篇
  1980年   13篇
  1979年   14篇
  1976年   13篇
  1975年   11篇
  1974年   16篇
  1973年   21篇
  1972年   18篇
  1971年   12篇
  1969年   11篇
  1965年   38篇
  1964年   19篇
  1963年   32篇
  1962年   23篇
  1961年   33篇
  1960年   21篇
  1959年   27篇
  1958年   27篇
  1957年   12篇
排序方式: 共有1137条查询结果,搜索用时 15 毫秒
71.
72.
Preliminary determinations of ancient pelagic sedimentation rates agree with modern rates at about 4 meters per million years. By combining data on the thickness of graptolite zones from the North American Cordillera with data from other parts of the world, we have refined the Early Silurian time scale and obtained much better resolution than is possible for radiometric dates. The new Early Silurian time scale allows estimation of true rates of change in graptolite diversity. The Llandoverian diversity explosion is twice as rapid as was previously thought. The brevity of diversity lows and rapidity of speciation support modern theories of quantum evolution.  相似文献   
73.
Synaptic transmission is the key system for the information transfer and elaboration among neurons. Nevertheless, a synapse is not a standing alone structure but it is a part of a population of synapses inputting the information from several neurons on a specific area of the dendritic tree of a single neuron. This population consists of excitatory and inhibitory synapses the inputs of which drive the postsynaptic membrane potential in the depolarizing (excitatory synapses) or depolarizing (inhibitory synapses) direction modulating in such a way the postsynaptic membrane potential. The postsynaptic response of a single synapse depends on several biophysical factors the most important of which is the value of the membrane potential at which the response occurs. The concurrence in a specific time window of inputs by several synapses located in a specific area of the dendritic tree can, consequently, modulate the membrane potential such to severely influence the single postsynaptic response. The degree of modulation operated by the synaptic population depends on the number of synapses active, on the relative proportion between excitatory and inbibitory synapses belonging to the population and on their specific mean firing frequencies. In the present paper we show results obtained by the simulation of the activity of a single Glutamatergic excitatory synapse under the influence of two different populations composed of the same proportion of excitatory and inhibitory synapses but having two different sizes (total number of synapses). The most relevant conclusion of the present simulations is that the information transferred by the single synapse is not and independent simple transition between a pre- and a postsynaptic neuron but is the result of the cooperation of all the synapses which concurrently try to transfer the information to the postsynaptic neuron in a given time window. This cooperativeness is mainly operated by a simple mechanism of modulation of the postsynaptic membrane potential which influences the amplitude of the different components forming the postsynaptic excitatory response.  相似文献   
74.
Here, we describe a fast, easy-to-use, and sensitive method to profile in-depth structural micro-heterogeneity, including intricate N-glycosylation profiles, of monoclonal antibodies at the native intact protein level by means of mass spectrometry using a recently introduced modified Orbitrap Exactive Plus mass spectrometer. We demonstrate the versatility of our method to probe structural micro-heterogeneity by describing the analysis of three types of molecules: (1) a non-covalently bound IgG4 hinge deleted full-antibody in equilibrium with its half-antibody, (2) IgG4 mutants exhibiting highly complex glycosylation profiles, and (3) antibody-drug conjugates. Using the modified instrument, we obtain baseline separation and accurate mass determination of all different proteoforms that may be induced, for example, by glycosylation, drug loading and partial peptide backbone-truncation. We show that our method can handle highly complex glycosylation profiles, identifying more than 20 different glycoforms per monoclonal antibody preparation and more than 30 proteoforms on a single highly purified antibody. In analyzing antibody-drug conjugates, our method also easily identifies and quantifies more than 15 structurally different proteoforms that may result from the collective differences in drug loading and glycosylation. The method presented here will aid in the comprehensive analytical and functional characterization of protein micro-heterogeneity, which is crucial for successful development and manufacturing of therapeutic antibodies  相似文献   
75.

Background and Aims

Recent research on the history of Platanus reveals that hybridization phenomena occurred in the central American species. This study has two goals: to help resolve the evolutive puzzle of central American Platanus, and to test the potential of real-time polymerase chain reaction (PCR) for detecting ancient hybridization.

Methods

Sequencing of a uniparental plastid DNA marker [psbA-trnH(GUG) intergenic spacer] and qualitative and quantitative single nucleotide polymorphism (SNP) genotyping of biparental nuclear ribosomal DNA (nrDNA) markers [LEAFY intron 2 (LFY-i2) and internal transcribed spacer 2 (ITS2)] were used.

Key Results

Based on the SNP genotyping results, several Platanus accessions show the presence of hybridization/introgression, including some accessions of P. rzedowskii and of P. mexicana var. interior and one of P. mexicana var. mexicana from Oaxaca (= P. oaxacana). Based on haplotype analyses of the psbA-trnH spacer, five haplotypes were detected. The most common of these is present in taxa belonging to P. orientalis, P. racemosa sensu lato, some accessions of P. occidentalis sensu stricto (s.s.) from Texas, P. occidentalis var. palmeri, P. mexicana s.s. and P. rzedowskii. This is highly relevant to genetic relationships with the haplotypes present in P. occidentalis s.s. and P. mexicana var. interior.

Conclusions

Hybridization and introgression events between lineages ancestral to modern central and eastern North American Platanus species occurred. Plastid haplotypes and qualitative and quantitative SNP genotyping provide information critical for understanding the complex history of Mexican Platanus. Compared with the usual molecular techniques of sub-cloning, sequencing and genotyping, real-time PCR assay is a quick and sensitive technique for analysing complex evolutionary patterns.  相似文献   
76.

Background

Ipilimumab can result in durable clinical responses among patients with advanced melanoma. However, no predictive marker of clinical activity has yet been identified. We provide preliminary data describing the correlation between immunological parameters and response/survival among patients with advanced melanoma who received ipilimumab 10 mg/kg in an expanded access programme.

Methods

Patients received ipilimumab 10 mg/kg every 3 weeks (Q3W) for four doses (induction) and Q12W from week 24 (W24) as maintenance therapy. Tumor assessments were conducted Q12W. Expression of inducible T cell costimulator (ICOS) on CD4+ and CD8+ T cells was assessed at baseline, W7, W12 and W24, and the ratio between absolute neutrophils (N) and lymphocytes (L) determined at baseline, W4, W7 and W10.

Results

Median overall survival among 27 patients was 9.6 months (95 % CI 3.2–16.1), with 3- and 4-year survival rates of 20.4 %. Five patients survived >4 years. Patients with an increase in the number of circulating ICOS+ T cells at W7 were more likely to experience disease control and have improved survival. An N/L ratio below the median at W7 and W10 was also associated with better survival compared with an N/L ratio above the median.

Conclusions

Ipilimumab can induce long-term survival benefits in heavily pretreated patients with metastatic melanoma. Changes in the number of circulating ICOS+ T cells or N/L ratio during ipilimumab treatment may represent early markers of response. However, given the limited sample size, further investigation is required.  相似文献   
77.
Summary

Parthenogenesis following oocyte activation has been observed in a number of marine invertebrates, but the fate of parthenogenesis in bivalve mollusc embryos is unclear. We used the dwarf surf clam, Mulinia lateralis, to examine parthenogenetic development of KC1-activated oocytes using the polar body suppressing agents caffeine and heat or cytochalasin B. Development was followed by epifluorescence microscopy and flow-cytometric analysis using the DNA-specific fluorochrome DAPI. All agents suppressed polar body formation to some degree, putatively increasing the ploidy level and retaining a meiotic centrosome in the zygote; but the zygotes failed to develop normally. Failure of the zygotes to develop suggests that the meiotic centrosome is incapable of participating in mitosis in bivalves.  相似文献   
78.
1. Human activities affect fish assemblages in a variety of ways. Large‐scale and long‐term disturbances such as in‐stream dredging and mining alter habitat and hydrodynamic characteristics within rivers which can, in turn, alter fish distribution. Habitat heterogeneity is decreased as the natural riffle–pool–run sequences are lost to continuous pools and, as a consequence, lotic species are displaced by lentic species, while generalist and invasive species displace native habitat specialists. Sediment and organic detritus accumulate in deep, dredged reaches and behind dams, disrupting nutrient flow and destroying critical habitat for habitat specialist species. 2. We used standard ecological metrics such as species richness and diversity, as well as stable isotope analysis of δ13C and δ15N, to quantify the differences in fish assemblages sampled by benthic trawls among dredged and undredged sites in the Allegheny River, Pennsylvania, U.S.A. 3. Using mixed‐effects models, we found that total catch, species richness and diversity were negatively correlated with depth (P < 0.05), while species richness, diversity and proportion of species in lithophilic (‘rock‐loving’) reproductive guilds were lower at dredged than at undredged sites (P < 0.05). 4. Principal components analysis and manova revealed that taxa such as darters in brood hider and substratum chooser reproductive guilds were predominantly associated with undredged sites along principal component axis 1 (PC1 and manova P < 0.05), while nest spawners such as catfish and open substratum spawners including suckers were more associated with dredged sites along PC2 (P < 0.05). 5. Stable isotope analysis of δ13C and δ15N revealed shifts from reliance on shallow water and benthic‐derived nutrients at undredged sites to reliance on phytoplankton and terrestrial detritus at deep‐water dredged sites. Relative trophic positions were also lower at dredged sites for many species; loss of benthic nutrient pathways associated with depth and dredging history is hypothesised. 6. The combination of ecological metrics and stable isotope analysis thus shows how anthropogenic habitat loss caused by gravel dredging can decrease benthic fish abundance and diversity, and that species in substratum‐specific reproductive guilds are at particular risk. The effects of dredging also manifest by altering resource use and nutrient pathways within food webs. Management and conservation decisions should therefore consider the protection of relatively shallow areas with suitable substratum for spawning for the protection of native fishes.  相似文献   
79.
The major goal of evolutionary thermal biology is to understand how variation in temperature shapes phenotypic evolution. Comparing thermal reaction norms among populations from different thermal environments allows us to gain insights into the evolutionary mechanisms underlying thermal adaptation. Here, we have examined thermal adaptation in six wild populations of the fruit fly (Drosophila melanogaster) from markedly different natural environments by analyzing thermal reaction norms for fecundity, thorax length, wing area, and ovariole number under ecologically realistic fluctuating temperature regimes in the laboratory. Contrary to expectation, we found only minor differences in the thermal optima for fecundity among populations. Differentiation among populations was mainly due to differences in absolute (and partly also relative) thermal fecundity performance. Despite significant variation among populations in the absolute values of morphological traits, we observed only minor differentiation in their reaction norms. Overall, the thermal reaction norms for all traits examined were remarkably similar among different populations. Our results therefore suggest that thermal adaptation in D. melanogaster predominantly involves evolutionary changes in absolute trait values rather than in aspects of thermal reaction norms.  相似文献   
80.
Twelve polymorphic microsatellite markers were developed from microsatellite‐enriched DNA libraries and mined from an expressed sequence tags library of Diaphorina citri, the vector of the citrus greening disease (huanglongbing). Analysis of 288 individuals from Florida, Texas, and Brazil showed that allelic diversity ranged from three to eight alleles per locus and observed and expected heterozygosities ranged from 0.014 to 0.569 and from 0.052 to 0.653, respectively. These variable microsatellite loci can provide means for assessing overall genetic variation and migration patterns for this agriculturally important pest species. This information can be used to aid in developing successful management strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号