首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   9篇
  144篇
  2023年   4篇
  2022年   2篇
  2021年   12篇
  2020年   2篇
  2019年   7篇
  2018年   10篇
  2017年   2篇
  2016年   2篇
  2015年   14篇
  2014年   16篇
  2013年   12篇
  2012年   8篇
  2011年   6篇
  2010年   1篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  1992年   2篇
  1991年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   5篇
  1975年   1篇
  1974年   2篇
  1970年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
61.
Presence of heavy metals including lead (Pb) in the textile effluents is a crucial factor affecting the growth and potential of the dye decolorizing bacterial strains. This work was planned to isolate and characterize a bacterial strain exhibiting the potential to decolorize a range of azo dyes as well as the resistance to Pb. In this study, several Pb tolerant bacteria were isolated from effluents of textile industry. These bacterial isolates were screened for their potential of decolorizing the reactive red-120 (RR120) azo dye with presence of Pb (50 mg L?1). The most efficient isolate was further characterized for its potential to resist Pb and decolorize different azo dyes under varying cultural and incubation conditions. Out of the total 82 tested bacterial isolates, 30 bacteria were found to have varying potentials to resist the presence of lead (Pb) and carry out decolorization of an azo dye reactive red-120 (RR120) in the medium amended with Pb (50 mg L?1). The most efficient selected bacterium, Pseudomonas aeruginosa strain HF5, was found to show a good potential not only to grow in the presence of considerable concentration of Pb but also to decolorize RR120 and other azo dyes in the media amended with Pb. The strain HF5 completely (>?90%) decolorized RR120 in mineral salt medium amended with 100 mg L?1 of Pb and 20 g L?1 NaCl. This strain also considerably (>?50%) decolorized RR120 up to the presence of 2000 mg L?1 of Pb and 50 g L?1 of NaCl but with reduced rate. The optimal decolorization of RR120 by HF5 was achieved when the pH of the Pb amended (100 mg L?1) mineral salt media was adjusted at 7.5 and 8.5. Interestingly, this strain also showed the tolerance to a range of metal ions with varying MIC values. The Pseudomonas aeruginosa strain HF5 harboring the unique potentials to grow and decolorize the azo dyes in the presence of Pb is envisaged as a potential bioresource for devising the remediation strategies for treatment of colored textile wastewaters loaded with Pb and other heavy metal ions.  相似文献   
62.
63.
Journal of Biological Physics - The objective of this research is to study the combined influences of applied electric and magnetic fields on the two-phase peristaltic motion of nanofluid through a...  相似文献   
64.
Endosulfan is one of the persistent organochlorinated pesticides used extensively throughout the world, particularly in the developing countries. Its microbial metabolic transformation product endosulfan sulphate is more toxic and persistent than the parent compound itself. In order to completely mineralize endosulfan, augmentation of soil microbial community with efficient endosulfan degradation properties could a potentially viable option. In the present study, endosulfan degrading bacterium was isolated from the agriculture-contaminated soil of Shujaabad, Multan, Pakistan by using enrichment technique. The isolated bacterial strain EN-1 (Endosulfan-1) was identified as S. maltophilia by 16S rRNA sequencing and biochemical analysis. EN-1 has demonstrated the ability to utilize endosulfan as sole sulfur source. Kinetics of endosulfan degradation was studied at various initial concentrations ranges from 5 mg/L to 100 mg/L by growth dependent and growth independent kinetic models. Biodegradation kinetics revealed that the bacterium was highly efficient in endosulfan degradation. The average values of kinetic constants i.e. Ks, and µmax were 13.73 mg/L and 0.210 h?1 respectively, while µmax/Ks ratio was 0.015. Addition of sulfur decreased the rate of degradation as the µmax/Ks was observed to reduce. GC-MS analysis revealed that the bacterium metabolised the endosulfan into non-toxic metabolite i.e. endosulfan diol. The study instigates a complete elucidation of degradation process for commercial applications.  相似文献   
65.
To date, publicly available plastid genomes of legumes have for the most part been limited to the subfamily Papilionoideae. Here we report 13 new plastid genomes of legumes spanning all three subfamilies. The genomes representing Caesalpinioideae and Mimosoideae are highly conserved in gene content and gene order, similar to the ancestral angiosperm genome organization. Genomes within the Papilionoideae, however, have reduced sizes due to deletions in nine intergenic spacers primarily in the large single copy region. Our study also indicates that rps16 has been independently lost at least five times in legumes, with additional gene and intron losses scattered among the papilionoids. Additionally, genera from two distinct lineages within the papilionoids, Lupinus and Robinia, have a parallel inversion of 36 and 39 kb, respectively. This parallel inversion is novel as it appears to be caused by a 29 bp repeat within two trnS genes. This repeat is present in all available legume plastid genomes indicating that there is the potential for this inversion to be present in more species. This case of a homoplasious inversion is also evidence that some inversion events may not be reliable phylogenetic markers.  相似文献   
66.
Based on structure of the substrate of urease and for the purpose of designing pharmacophore models for urease inhibitors, which could be effective in physiological and pharmacological studies, a series of twenty-five 1,3,4-diazole-2(3H)-thiones-2(3H)-thiones, 1,3,4-diazoles-2(3H)-thiones, and 1,2,4-tri-3-thiones (OSNs) were designed, synthesized, and evaluated for various kinetic parameters of urease inhibition. OSNs inhibited the activity of urease(s) in a concentration dependent fashion. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of inhibition was of pure competitive type for all the 25 compounds. 5-[4-(hydroxy)phenyl]-1,3,4-thiadiazole-2(3H)-thione was found to be the most active one with a Ki value of 2 microM. The Ki values were increased with an increase in substrate concentrations. Apparently, OSNs employ a homologous mechanism of action by exploiting a common transition catalysis state and acting as ligand chelators to form octahedral complexes with the urease enzymes in an orientation-specific mode. The inhibition was slightly potentiated by lower pH and not abolished in the presence of NH2OH (a scavenger of histidine residue). Because of their safe profile in the genotoxic assay, they may be pursued in the near future for human testing  相似文献   
67.

Background

Diminished brain levels of two neurohormones, 5-hydroxytryptamine (5-HT; serotonin) and 1,25-dihydroxyvitamin D3 (1,25D; active vitamin D metabolite), are proposed to play a role in the atypical social behaviors associated with psychological conditions including autism spectrum disorders and depression. We reported previously that 1,25D induces expression of tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway to 5-HT, in cultured rat serotonergic neuronal cells. However, other enzymes and transporters in the pathway of tryptophan metabolism had yet to be examined with respect to the actions of vitamin D. Herein, we probed the response of neuronal cells to 1,25D by quantifying mRNA expression of serotonin synthesis isozymes, TPH1 and TPH2, as well as expression of the serotonin reuptake transporter (SERT), and the enzyme responsible for serotonin catabolism, monoamine oxidase-A (MAO-A). We also assessed the direct production of serotonin in cell culture in response to 1,25D.

Results

Employing quantitative real-time PCR, we demonstrate that TPH-1/-2 mRNAs are 28- to 33-fold induced by 10 nM 1,25D treatment of cultured rat serotonergic neuronal cells (RN46A-B14), and the enhancement of TPH2 mRNA by 1,25D is dependent on the degree of neuron-like character of the cells. In contrast, examination of SERT, the gene product of which is a target for the SSRI-class of antidepressants, and MAO-A, which encodes the predominant catabolic enzyme in the serotonin pathway, reveals that their mRNAs are 51–59% repressed by 10 nM 1,25D treatment of RN46A-B14 cells. Finally, serotonin concentrations are significantly enhanced (2.9-fold) by 10 nM 1,25D in this system.

Conclusions

These results are consistent with the concept that vitamin D maintains extracellular fluid serotonin concentrations in the brain, thereby offering an explanation for how vitamin D could influence the trajectory and development of neuropsychiatric disorders. Given the profile of gene regulation in cultured RN46A-B14 serotonergic neurons, we conclude that 1,25D acts not only to induce serotonin synthesis, but also functions at an indirect, molecular-genomic stage to mimic SSRIs and MAO inhibitors, likely elevating serotonin in the CNS. These data suggest that optimal vitamin D status may contribute to improving behavioral pathophysiologies resulting from dysregulation of serotonergic neurotransmission.
  相似文献   
68.
R V Farese  M A Sabir  R E Larson 《Biochemistry》1981,20(21):6047-6051
We studied the effects of adrenocorticotropin (ACTH) and cycloheximide on adrenal enzymes involved in phosphatidate synthesis. Treatment of rats in vivo with ACTH induced a rapid increase in phosphatide synthesis from diglyceride and ATP in adrenal homogenates, and cycloheximide treatment prevented this increase if given before ACTH and rapidly reversed the increase if given after ACTH. The stimulatory effect of ACTH appeared to be largely due to an increase in diglyceride substrate, as kinase activity was not altered. The inhibitory effect of cycloheximide, on the other hand, appeared to be due to a decrease in diglyceride kinase activity. Neither ACTH nor cycloheximide treatment had any effect on the activity of glycerol-3'-phosphate acyltransferase or phosphatidate phosphatase. Our findings suggest that (a) ACTH increases the flow of phospholipid (and their levels) throughout the entire circular pathway, i.e., phosphatidate leads to CDP-diacylglycerol leads to inositides leads to diglycerides leads to phosphatidate, and (b) a labile protein may serve to allow entry into a recycling of diglyceride in this pathway. In addition, since cycloheximide blocked carbachol-induced increases in pancreatic and salivary glandular phosphatidate synthesis resulting from phosphatidylinositol hydrolysis and consequent diglyceride generation, the putative labile protein may have widespread importance.  相似文献   
69.
Microbial biotechnologies for the decolorization of textile wastewaters have attracted worldwide attention because of their economic suitability and easiness in handling. However, the presence of high amounts of salts and metal ions in textile wastewaters adversely affects the decolorization efficiency of the microbial bioresources. In this regard, the present study was conducted to isolate salt tolerant bacterial strains which might have the potential to decolorize azo dyes even in the presence of multi-metal ion mixtures. Out of the tested 48 bacteria that were isolated from an effluent drain, the strain NA6 was found relatively more efficient in decolorizing the reactive yellow-2 (RY2) dye in the presence of 50 g L?1 NaCl. Based on the similarity of its 16S rRNA gene sequence and its position in a phylogenetic tree, this strain was designated as Proteus sp. NA6. The strain NA6 showed efficient decolorization (>90 %) of RY2 at pH 7.5 in the presence of 50 g L?1 NaCl under static incubation at 30 °C. This strain also had the potential to efficiently decolorize other structurally related azo dyes in the presence of 50 g L?1 NaCl. Moreover, Proteus sp. NA6 was found to resist the presence of different metal ions (Co+2, Cr+6, Zn+2, Pb+2, Cu+2, Cd+2) and was capable of decolorizing reactive dyes in the presence of different levels of the mixtures of these metal ions along with 50 g L?1 NaCl. Based on the findings of this study, it can be suggested that Proteus sp. NA6 might serve as a potential bioresource for the biotechnologies involving bioremediation of textile wastewaters containing the metal ions and salts.  相似文献   
70.
Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号