首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3476篇
  免费   262篇
  国内免费   1篇
  3739篇
  2022年   19篇
  2021年   39篇
  2020年   15篇
  2019年   26篇
  2018年   35篇
  2017年   33篇
  2016年   53篇
  2015年   89篇
  2014年   101篇
  2013年   149篇
  2012年   153篇
  2011年   154篇
  2010年   114篇
  2009年   120篇
  2008年   177篇
  2007年   184篇
  2006年   195篇
  2005年   186篇
  2004年   192篇
  2003年   191篇
  2002年   173篇
  2001年   136篇
  2000年   142篇
  1999年   111篇
  1998年   38篇
  1997年   30篇
  1996年   35篇
  1995年   40篇
  1994年   43篇
  1993年   31篇
  1992年   67篇
  1991年   65篇
  1990年   47篇
  1989年   46篇
  1988年   52篇
  1987年   43篇
  1986年   54篇
  1985年   37篇
  1984年   20篇
  1983年   31篇
  1982年   26篇
  1981年   15篇
  1980年   20篇
  1979年   26篇
  1978年   18篇
  1977年   18篇
  1975年   19篇
  1974年   12篇
  1971年   12篇
  1969年   20篇
排序方式: 共有3739条查询结果,搜索用时 0 毫秒
991.
Arabidopsis thaliana contains eight glutathione peroxidase (GPX) homologs (AtGPX1-8). Four mature GPX isoenzymes with different subcellular distributions, AtGPX1, -2, -5 and -6, were overexpressed in Escherichia coli and characterized. Interestingly, these recombinant proteins were able to reduce H2O2, cumene hydroperoxide, phosphatidylcholine and linoleic acid hydroperoxides using thioredoxin but not glutathione or NADPH as an electron donor. The reduction activities of the recombinant proteins with H2O2 were 2-7 times higher than those with cumene hydroperoxide. Km values for thioredoxin and H2O2 were 2.2-4.0 and 14.0-25.4 microM, respectively. These finding suggest that GPX isoenzymes may function to detoxify H2O2 and organic hydroperoxides using thioredoxin in vivo and may also be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP balance.  相似文献   
992.
STAT3 regulates glucose homeostasis by suppressing the expression of gluconeogenic genes in the liver. The mechanism by which hepatic STAT3 is regulated by nutritional or hormonal status has remained unknown, however. Here, we show that an increase in the plasma insulin concentration, achieved either by glucose administration or by intravenous insulin infusion, stimulates tyrosine phosphorylation of STAT3 in the liver. This effect of insulin was mediated by the hormone's effects in the brain, and the increase in hepatic IL-6 induced by the brain-insulin action is essential for the activation of STAT3. The inhibition of hepatic glucose production and of expression of gluconeogenic genes induced by intracerebral ventricular insulin infusion was impaired in mice with liver-specific STAT3 deficiency or in mice with IL-6 deficiency. These results thus indicate that IL-6-STAT3 signaling in the liver contributes to insulin action in the brain, leading to the suppression of hepatic glucose production.  相似文献   
993.
Our previous report has shown that Irsogladine maleate (IM) counters and obviates the reduction in gap junction intercellular communication (GJIC) and the increase in IL-8 levels, respectively, induced by outer membrane protein 29 from Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) in cultured human gingival epithelial cells (HGEC). In addition, IM suppresses the increase in the secretion of IL-8 caused by whole live A. actinomycetemcomitans. These findings implicate the modulation of IL-8 levels by IM in abolishment of the reduction of GJIC in HGEC. Tight junctions are also responsible for cell-cell communication. Zonula occludens protein-1 (ZO-1) is a major tight junction protein. To investigate the regulatory mechanism of intercellular communication mediated by IM, in the present study, we focused on the involvement of IL-8 in A. actinomycetemcomitans-induced change in GJIC and ZO-1 expression in HGEC. IM countered the A. actinomycetemcomitans-induced reduction in levels of Connexin (CX) 43, suggesting that it could abolish the A. actinomycetemcomitans-induced reduction in GJIC in HGEC. CXCR-1 is a receptor of IL-8. The simultaneous addition of A. actinomycetemcomitans and anti-CXCR-1 antibody also abrogated the repression of GJIC and CX43 expression by A. actinomycetemcomitans in HGEC, although the anti-CXCR-1 antibody was less effective than IM. IM inhibited the IL-8-induced reduction in CX43 levels and GJIC in HGEC. IM countered the A. actinomycetemcomitans-induced reduction in the expression of ZO-1, although anti-CXCR-1 antibody did not influence the decrease in ZO-1 mRNA levels caused by A. actinomycetemcomitans. Furthermore, IL-8 had little effect on the mRNA levels of ZO-1. These findings suggest that IL-8 mediates the A. actinomycetemcomitans-induced reduction of GJIC and CX43 expression in HGEC. The regulation of IL-8 levels by IM in HGEC is partially involved in abrogation of the reduction of GJIC and CX43 expression by A. actinomycetemcomitans. Furthermore, the regulatory effect of IM on the expression of CX43 and ZO-1 is different.  相似文献   
994.
The visualization of live cell behaviors operating in situ combined with the power of mouse genetics represents a major step toward understanding the mechanisms regulating embryonic development, homeostasis, and disease progression in mammals. The availability of genetically encoded fluorescent protein reporters, combined with improved optical imaging modalities, have led to advances in our ability to examine cells in vivo. We developed a series of lipid-modified fluorescent protein fusions that are targeted to and label the secretory pathway and the plasma membrane, and that are amenable for use in mice. Here we report the generation of two strains of mice, each expressing a spectrally distinct lipid-modified GFP-variant fluorescent protein fusion. The CAG::GFP-GPI strain exhibited widespread expression of a glycosylphosphatidylinositol-tagged green fluorescent protein (GFP) fusion, while the CAG::myr-Venus strain exhibited widespread expression of a myristoyl-Venus yellow fluorescent protein fusion. Imaging of live transgenic embryonic stem (ES) cells, either live or fixed embryos and postnatal tissues demonstrated that glycosylphosphatidyl inositol- and myristoyl-tagged GFP-variant fusion proteins are targeted to and serve as markers of the plasma membrane. Moreover, our data suggest that these two lipid-modified protein fusions are dynamically targeted both to overlapping as well as distinct lipid-enriched compartments within cells. These transgenic strains not only represent high-contrast reporters of cell morphology and plasma membrane dynamics, but also may be used as in vivo sensors of lipid localization. Furthermore, combining these reporters with the study of mouse mutants will be a step forward in understanding the inter- and intracellular behaviors underlying morphogenesis in both normal and mutant contexts.  相似文献   
995.
The entomopathogenic fungus Cordyceps militaris belongs to vegetable wasps and plant worms and is used as herbal medicine, but β-1,3-glucan biosynthesis has been poorly studied in C. militaris. The fungal FKS1 gene encodes an integral membrane protein that is the catalytic subunit of β-1,3-glucan synthase. Here, we isolated cDNA clones encoding a full-length open reading frame of C. militaris FKS1. Cordyceps militaris Fks1 protein is a 1981 amino acid protein that shows significant similarity with other fungal Fks proteins. This study is the first report of molecular cloning of the β-1,3-glucan synthase catalytic subunit gene from vegetable wasps and plant worms.  相似文献   
996.
The ACR-8-like group of C. elegans nicotinic acetylcholine receptor (nAChR) subunits contain unusual motifs in the ACh binding site and in the −1′ position of transmembrane region two (TM2). Using site-directed mutagenesis (SDM) we have introduced these motifs into chicken α7 as it has not been possible to express C. elegans nAChR in vitro. Oocytes expressing α7 with the C. elegans binding motif show a reduced affinity and efficacy for both ACh and nicotine. The blocking action of the anthelmintic drug levamisole is reduced. The TM2 motif resulted in a non-functional receptor. We conclude that the TM2 motif profoundly restricts cation movement through the α7 channel but does not confer anion permeability. The altered form of the ACh binding motif is likely to result in a receptor with altered pharmacology, adding potential functional diversity at synapses in the nervous system and neuromuscular junctions of C. elegans.  相似文献   
997.
Myelination is an essential prerequisite for the nervous system to transmit an impulse efficiently by a saltatory conduction. In the peripheral nervous system (PNS), Schwann cells (SCs) engage in myelination. However, a detailed molecular mechanism underlying myelination still remains unclear. In this study, we hypothesized that the primary cilia of SCs are the regulators of Hedgehog (Hh) signaling-mediated myelination. To confirm our hypothesis, we used mouse dorsal root ganglion (DRG)/SC co-cultures, wherein the behavior of SCs could be analyzed by maintaining the interaction of SCs with DRG neurons. Under these conditions, SCs had primary cilia, and Hh signaling molecules accumulated on the primary cilia. When the SCs were stimulated by the addition of desert hedgehog or smoothened agonist, formation of myelin segments on the DRG axons was facilitated. On the contrary, upon administration of cyclopamine, an inhibitor of Hh signaling, myelin segments became comparable to those of controls. Of note, the ratio of SCs harboring primary cilium reached the highest point during the early phase of myelination. Furthermore, the strongest effects of Hh on myelination were encountered during the same stage. These results collectively indicate that Hh signaling regulates myelin formation through primary cilia in the PNS.  相似文献   
998.
999.
2,2-Bis(4-hydroxyphenyl)propane (bisphenol A; BPA) is an environmental endocrine-disrupting chemical. It mimics the effects of estrogen at multiple levels by activating estrogen receptors (ERs); however, BPA also affects the proliferation of human breast cancer cells independent of ERs. Although BPA inhibits progesterone (P4) signaling, the toxicological significance of its effects remain unknown. Tripartite motif-containing 22 (TRIM22) has been identified as a P4-responsive and apoptosis-related gene. Nevertheless, it has not yet been established whether exogenous chemicals change TRIM22 gene levels. Therefore, the present study investigated the effects of BPA on P4 signaling and TRIM22 and TP53 expression in human breast carcinoma MCF-7 cells. In MCF-7 cells incubated with various concentrations of P4, TRIM22 messenger RNA (mRNA) levels increased in a dose-dependent manner. P4 induced apoptosis and decreased viability in MCF-7 cells. The knockdown of TRIM22 abolished P4-induced decreases in cell viability and P4-induced apoptosis. P4 increased TP53 mRNA expression and p53 knockdown decrease the basal level of TRIM22 and P4 increased TRIM22 mRNA expression independent of p53 expression. BPA attenuated P4-induced increases in the ratio of cell apoptosis in a concentration-dependent manner, and the P4-induced decreases in cell viability was abolished in the presence of 100 nM and higher BPA concentrations. Furthermore, BPA inhibited P4-induced TRIM22 and TP53 expression. In conclusion, BPA inhibited P4-induced apoptosis in MCF-7 cells via the inhibition of P4 receptor transactivation. TRIM22 gene has potential as a biomarker for investigating the disruption of P4 signaling by chemicals.  相似文献   
1000.
In this study, the anti–severe acute respiratory syndrome coronavirus-2 (anti-SARS-CoV-2) activity of mycophenolic acid (MPA) and IMD-0354 was analyzed. These compounds were chosen based on their antiviral activities against other coronaviruses. Because they also inhibit dengue virus (DENV) infection, other anti-DENV compounds/drugs were also assessed. On SARS-CoV-2-infected VeroE6/TMPRSS2 monolayers, both MPA and IMD-0354, but not other anti-DENV compounds/drugs, showed significant anti-SARS-CoV-2 activity. Although MPA reduced the viral RNA level by only approximately 100-fold, its half maximal effective concentration was as low as 0.87 µ m , which is easily achievable at therapeutic doses of mycophenolate mofetil. MPA targets the coronaviral papain-like protease and an in-depth study on its mechanism of action would be useful in the development of novel anti-SARS-CoV-2 drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号