全文获取类型
收费全文 | 378篇 |
免费 | 31篇 |
专业分类
409篇 |
出版年
2023年 | 1篇 |
2022年 | 4篇 |
2021年 | 11篇 |
2020年 | 7篇 |
2019年 | 10篇 |
2018年 | 6篇 |
2017年 | 14篇 |
2016年 | 10篇 |
2015年 | 16篇 |
2014年 | 27篇 |
2013年 | 29篇 |
2012年 | 35篇 |
2011年 | 37篇 |
2010年 | 33篇 |
2009年 | 17篇 |
2008年 | 16篇 |
2007年 | 23篇 |
2006年 | 20篇 |
2005年 | 19篇 |
2004年 | 12篇 |
2003年 | 18篇 |
2002年 | 14篇 |
2001年 | 8篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1983年 | 2篇 |
1978年 | 1篇 |
排序方式: 共有409条查询结果,搜索用时 296 毫秒
401.
Maike Petersen Yana Abdullah Johannes Benner David Eberle Katja Gehlen Stephanie Hücherig Verena Janiak Kyung Hee Kim Marion Sander Corinna Weitzel Stefan Wolters 《Phytochemistry》2009,70(15-16):1663-1679
Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be “invented” for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration. 相似文献
402.
403.
Background and Aims
Cambium reactivation after dormancy and budbreak in deciduous trees requires a supply of mobilized reserve materials. The pathway and mode of transfer of these materials are poorly understood.Methods
Transport of reserve materials during cambium reactivation in Populus nigra was investigated by conventional and immunocytochemical TEM analyses, SDS–PAGE, western blotting and intracellular microinjection of fluorescent dyes.Key Results
Proteinaceous compounds stored in vacuoles and protein bodies of vascular cells and ray cells disappeared within 3 weeks after cambial reactivation and budbreak. Some of these proteins (32 kDa, 30 kDa and 15 kDa) were labelled by lectin antibodies in SDS–PAGE. The same antibodies were localized to plasmodesmata (PDs) between phloem parenchyma, ray cells and fusiform cambial cells. In addition, proteinaceous particles were localized inside the cytoplasmic sleeves of these PDs during budbreak. During this period, the functional diameter of PDs was about 2·2 nm which corresponds approximately to the Stokes'' radius of the detected 15-kDa protein.Conclusions
Lectin-like reserve proteins or their degradation products seem to be transferred through PDs of phloem parenchyma and rays during cambial reactivation and budbreak. PD transfer of storage proteins is a novelty which supports the concept of symplasmic nutrient supply to the cambial region. 相似文献404.
Sebastian Heinzel Maike Gold Christian Deuschle Felix Bernhard Walter Maetzler Daniela Berg Richard Dodel 《PloS one》2014,9(12)
Alpha-synuclein (α-Syn) plays a pivotal role in the pathophysiology of Parkinson’s disease (PD), which can partly be modulated by innate and adaptive immune functions, and vice versa. Here, naturally occurring α-Syn autoantibodies (α-Syn-nAbs) may be effective against α-Syn pathoetiology and may serve as a PD biomarker. However, serum and cerebrospinal fluid α-Syn-nAbs levels still lack consistent evidence as required for a reliable PD biomarker. Serum and cerebrospinal fluid α-Syn-nAbs levels of 66 PD patients and 69 healthy controls were assessed using a validated ELISA assay. Moreover, potential sources of error variance including unspecific ELISA background signals, free serum hemoglobin concentrations, α-Syn plate coating procedures, and differences in α-Syn-nAbs standards, were investigated. PD patients and controls did not differ in serum (p = .49) nor cerebrospinal fluid (p = .29) α-Syn-nAbs levels. Interestingly, free serum hemoglobin concentrations were negatively correlated with α-Syn-nAbs levels in controls (Spearman = −.41, p<.001), but not in PD patients ( = .16, p = .21). ELISA α-Syn plate coating procedures impacted inter-assay variability (same day coating: 8–16%; coating on different days: 16–58%). α-Syn-nAbs standards from different purification batches differed regarding optical density measured in ELISAs suggesting differences in α-Syn affinity. While α-Syn-nAbs levels may represent a potential PD biomarker, several methodological issues have to be considered to increase reproducibility of α-Syn-nAbs findings. Further studies using standardized protocols minimizing sources of error variance may be necessary to establish a reliable PD α-Syn-nAbs biomarker. 相似文献
405.
Rolli V Gallwitz M Wossning T Flemming A Schamel WW Zürn C Reth M 《Molecular cell》2002,10(5):1057-1069
We have established a protocol allowing transient and inducible coexpression of many foreign genes in Drosophila S2 Schneider cells. With this powerful approach of reverse genetics, we studied the interaction of the protein tyrosine kinases Syk and Lyn with the B cell antigen receptor (BCR). We find that Lyn phosphorylates only the first tyrosine whereas Syk phosphorylates both tyrosines of the BCR immunoreceptor tyrosine-based activation motif (ITAM). Furthermore, we show that Syk is a positive allosteric enzyme, which is strongly activated by the binding to the phosphorylated ITAM tyrosines, thus initiating a positive feedback loop at the receptor. The BCR-dependent Syk activation and signal amplification is efficiently counterbalanced by protein tyrosine phosphatases, the activity of which is regulated by H(2)O(2) and the redox equilibrium inside the cell. 相似文献
406.
Weber-Sparenberg C Pöplau P Brookman H Rochón M Möckel C Nietschke M Jung H 《Archives of microbiology》2006,186(4):307-316
Transport of flagellar structural proteins beyond the cytoplasmic membrane is accomplished by a type III secretory pathway [flagellar type III secretion system (fTTSS)]. The mechanism of substrate recognition by the fTTSS is still enigmatic. Using the hook scaffolding protein FlgD of Escherichia coli as a model substrate, it is demonstrated that the export signal is contained within the N-terminal 71 amino acids of FlgD. Analysis of frame-shift mutations and alterations of the nucleotide sequence suggest a proteinaceous nature of the signal. Furthermore, the physicochemical properties of the first about eight amino acids are crucial for export. 相似文献
407.
Maike Sabel Reiner Eckmann Erik Jeppesen Roland Rösch Dietmar Straile 《Freshwater Biology》2020,65(8):1325-1336
- The littoral zone of lakes is used as spawning, shelter, or feeding habitat for many fish species and hence is of key importance for overall lake functioning. Despite this, hardly any studies exist examining the long-term dynamics and response of the littoral fish community, composed mostly of juvenile fish, to environmental change. Here, we study the response of total catch per unit effort (CPUE) and individual species CPUE of such a community to 17 years of oligotrophication and examine whether the species responses can be characterised as synchronous or asynchronous.
- We analyse a data set of beach seine catches carried out during morning and twilight, late spring and late summer at three sites in large and deep Lake Constance from 1997 to 2014. Generalised additive mixed models were used to explore changes in CPUE of the overall community and of the most frequently occurring species, and Kendall's W test was applied to examine whether the dynamics of fish species were synchronous or asynchronous.
- Species-specific and total CPUE strongly differed between morning and twilight and between spring and summer indicating an important role of behavioural and life cycle adaptations of species for CPUE. In addition, also the CPUE of some species seeking shelter behind larger stones was lower at sites without these.
- Total CPUE did not decline suggesting the overall abundance of littoral fish was resilient to declining nutrients. In contrast, fish community composition changed strongly during the study period due to increases in some species (dace, loach, perch) and decreases in others (bream, burbot, chub, ruffe), indicating response diversity of fish to oligotrophication. The type of community dynamics was scale-dependent, whereby significantly synchronous dynamics according to Kendall's W were observed when taking seasonal variability into account. In contrast, significantly asynchronous species dynamics were observed when only the low-frequency variability of species dynamics was considered separately for spring and summer time series.
- Resilience of littoral fish total CPUE to oligotrophication might have important consequences for ecosystem dynamics and ecosystem services beyond the littoral zone. As small fish often impose strong predation pressure on zooplankton, their resilience might sustain a high top-down control on zooplankton resulting in a further reduction of zooplankton biomass. This could contribute to delayed food web responses and reduced growth of fish with oligotrophication.
408.
Kanika Vanshylla Veronica Di Cristanziano Franziska Kleipass Felix Dewald Philipp Schommers Lutz Gieselmann Henning Gruell Maike Schlotz Meryem S. Ercanoglu Ricarda Stumpf Petra Mayer Matthias Zehner Eva Heger Wibke Johannis Carola Horn Isabelle Suárez Norma Jung Susanne Salomon Florian Klein 《Cell host & microbe》2021,29(6):917-929.e4
409.