首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   54篇
  2022年   6篇
  2021年   16篇
  2020年   7篇
  2019年   10篇
  2018年   8篇
  2017年   15篇
  2016年   17篇
  2015年   23篇
  2014年   32篇
  2013年   36篇
  2012年   52篇
  2011年   45篇
  2010年   49篇
  2009年   30篇
  2008年   33篇
  2007年   42篇
  2006年   31篇
  2005年   27篇
  2004年   28篇
  2003年   25篇
  2002年   24篇
  2001年   14篇
  2000年   13篇
  1999年   12篇
  1998年   11篇
  1997年   12篇
  1996年   7篇
  1995年   14篇
  1994年   8篇
  1993年   8篇
  1992年   6篇
  1991年   14篇
  1990年   12篇
  1989年   7篇
  1988年   4篇
  1987年   9篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1979年   7篇
  1973年   2篇
  1970年   3篇
  1969年   4篇
  1968年   4篇
  1966年   4篇
  1936年   2篇
  1912年   2篇
  1901年   4篇
  1900年   2篇
排序方式: 共有789条查询结果,搜索用时 15 毫秒
71.
Paramutation is the transfer of epigenetic information between alleles that leads to a heritable change in expression of one of these alleles. Paramutation at the tissue‐specifically expressed maize (Zea mays) b1 locus involves the low‐expressing B′ and high‐expressing B‐I allele. Combined in the same nucleus, B′ heritably changes B‐I into B′. A hepta‐repeat located 100‐kb upstream of the b1 coding region is required for paramutation and for high b1 expression. The role of epigenetic modifications in paramutation is currently not well understood. In this study, we show that the B′ hepta‐repeat is DNA‐hypermethylated in all tissues analyzed. Importantly, combining B′ and B‐I in one nucleus results in de novo methylation of the B‐I repeats early in plant development. These findings indicate a role for hepta‐repeat DNA methylation in the establishment and maintenance of the silenced B′ state. In contrast, nucleosome occupancy, H3 acetylation, and H3K9 and H3K27 methylation are mainly involved in tissue‐specific regulation of the hepta‐repeat. Nucleosome depletion and H3 acetylation are tissue‐specifically regulated at the B‐I hepta‐repeat and associated with enhancement of b1 expression. H3K9 and H3K27 methylation are tissue‐specifically localized at the B′ hepta‐repeat and reinforce the silenced B′ chromatin state. The B′ coding region is H3K27 dimethylated in all tissues analyzed, indicating a role in the maintenance of the silenced B′ state. Taken together, these findings provide insight into the mechanisms underlying paramutation and tissue‐specific regulation of b1 at the level of chromatin structure.  相似文献   
72.
Loeber J  Claussen M  Jahn O  Pieler T 《The FEBS journal》2010,277(22):4722-4731
Localization of a specific subset of maternal mRNAs to the vegetal cortex of Xenopus oocytes is important for the regulation of germ layer formation and germ cell development. It is driven by vegetal localization complexes that are formed with the corresponding signal sequences in the untranslated regions of the mRNAs and with a number of different so-called localization proteins. In the context of the present study, we incorporated tagged variants of the known localization protein Vg1RBP into vegetal localization complexes by means of oocyte microinjection. Immunoprecipitation of the corresponding RNPs allowed for the identification of novel Vg1RBP-associated proteins, such as the embryonic poly(A) binding protein, the Y-box RNA-packaging protein 2B and the oocyte-specific version of the elongation factor 1α (42Sp50). Incorporation of 42Sp50 into localization RNPs could be confirmed by co-immunoprecipitation of Vg1RBP and Staufen1 with myc-tagged 42Sp50. Furthermore, myc-42Sp50 was found to co-sediment with the same two proteins in large, RNAse-sensitive complexes, as well as to associate specifically with several vegetally localizing mRNAs but not with nonlocalized control RNAs. Finally, oocyte microinjection experiments reveal that 42Sp50 is a protein that shuttles between the nucleus and cytoplasm. Taken together, these observations provide evidence for a novel function of 42Sp50 in the context of vegetal mRNA transport in Xenopus oocytes.  相似文献   
73.

Background  

Apoptosis is an essential cell death process throughout the entire life span of all metazoans and its deregulation in humans has been implicated in many proliferative and degenerative diseases. Mitochondrial outer membrane permeabilisation (MOMP) and activation of effector caspases are key processes during apoptosis signalling. MOMP can be subject to spatial coordination in human cancer cells, resulting in intracellular waves of cytochrome-c release. To investigate the consequences of these spatial anisotropies in mitochondrial permeabilisation on subsequent effector caspase activation, we devised a mathematical reaction-diffusion model building on a set of partial differential equations.  相似文献   
74.
AimsRecent interest has focused on plant antioxidants as potentially useful neuroprotective agents. In most studies only the genuine forms of flavonoids were used, although they are rapidly metabolized. Therefore, we have compared protective activities of two flavonoids (luteolin, quercetin) and two of their bioavailable metabolites (3,4-DHPAA and 3,4-DHT) against oxidative stress, induced by peroxides (t-BHP, H2O2) and iron (FeSO4), in neuronal PC12 cells.Main methodsWe have measured their effect on the prevention of cell death (MTT assay), glutathione depletion (GSH assay), lipid peroxidation (MDA assay) and production of ROS (DCF assay). Differentiated PC12 cells were used as a model system of neuronal cells. The compounds (concentration range 6–25 µmol/L) were tested in preincubation and coincubation experiments.Key findingsIn MTT and DCF assays all tested compounds showed excellent protection. When cells were exposed to peroxides, both metabolites increased GSH levels less efficiently than their parent flavonoids in both types of incubations. Following exposure to iron, only coincubation significantly prevented GSH depletion and the metabolites surprisingly mimicked the suppressive effect of flavonoids. MDA levels induced by all stressors were reduced more potently during coincubation than during preincubation with polyphenols. While the lipophilic metabolite 3,4-DHT exerted excellent antilipoperoxidant activity, the hydrophilic metabolite 3,4-DHPAA was less effective.SignificanceThese results demonstrate that most of the protective effects of flavonoids against oxidative stress in PC12 cells are continued despite biodegradation of the parent flavonoids. In general, the lipophilic metabolite 3,4-DHT was more active than the hydrophilic 3,4-DHPAA.  相似文献   
75.
Lemon balm (Melissa officinalis, Lamiaceae) is a well-known medicinal plant. Amongst the biologically active ingredients are a number of phenolic compounds, the most prominent of which is rosmarinic acid. To obtain better knowledge of the biosynthesis of these phenolic compounds, two enzymes of the general phenylpropanoid pathway, phenylalanine ammonia-lyase (PAL) and 4-coumarate:coenzyme A-ligase (4CL), were investigated in suspension cultures of lemon balm. MoPAL1 and Mo4CL1 cDNAs were cloned and heterologously expressed in Escherichia coli and the enzymes characterised. Expression analysis of both genes showed a correlation with the enzyme activities and rosmarinic acid content during a cultivation period of the suspension culture. Southern-blot analysis suggested the presence of most probably two gene copies in the M. officinalis genome of both PAL and 4CL. The genomic DNA sequences of MoPAL1 and Mo4CL1 were amplified and sequenced. MoPAL1 contains one phase 2 intron of 836 bp at a conserved site, whilst Mo4CL1 was devoid of introns.  相似文献   
76.

Background  

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an immunoglobulin (Ig)-related glycoprotein, serves as cellular receptor for a variety of Gram-negative bacterial pathogens associated with the human mucosa. In particular, Neisseria gonorrhoeae, N. meningitidis, Moraxella catarrhalis, and Haemophilus influenzae possess well-characterized CEACAM1-binding adhesins. CEACAM1 is typically involved in cell-cell attachment, epithelial differentiation, neovascularisation and regulation of T-cell proliferation, and is one of the few CEACAM family members with homologues in different mammalian lineages. However, it is unknown whether bacterial adhesins of human pathogens can recognize CEACAM1 orthologues from other mammals.  相似文献   
77.
78.
79.
Recently we showed that degradation of several nonylphenol isomers with alpha-quaternary carbon atoms is initiated by ipso-hydroxylation in Sphingobium xenophagum Bayram (F. L. P. Gabriel, A. Heidlberger, D. Rentsch, W. Giger, K. Guenther, and H.-P. E. Kohler, J. Biol. Chem. 280:15526-15533, 2005). Here, we demonstrate with 18O-labeling experiments that the ipso-hydroxy group was derived from molecular oxygen and that, in the major pathway for cleavage of the alkyl moiety, the resulting nonanol metabolite contained an oxygen atom originating from water and not from the ipso-hydroxy group, as was previously assumed. Our results clearly show that the alkyl cation derived from the alpha-quaternary nonylphenol 4-(1-ethyl-1,4-dimethyl-pentyl)-phenol through ipso-hydroxylation and subsequent dissociation of the 4-alkyl-4-hydroxy-cyclohexadienone intermediate preferentially combines with a molecule of water to yield the corresponding alcohol and hydroquinone. However, the metabolism of certain alpha,alpha-dimethyl-substituted nonylphenols appears to also involve a reaction of the cation with the ipso-hydroxy group to form the corresponding 4-alkoxyphenols. Growth, oxygen uptake, and 18O-labeling experiments clearly indicate that strain Bayram metabolized 4-t-butoxyphenol by ipso-hydroxylation to a hemiketal followed by spontaneous dissociation to the corresponding alcohol and p-quinone. Hydroquinone effected high oxygen uptake in assays with induced resting cells as well as in assays with cell extracts. This further corroborates the role of hydroquinone as the ring cleavage intermediate during degradation of 4-nonylphenols and 4-alkoxyphenols.  相似文献   
80.
The fungus Daedalea quercina (oak mazegill) was examined for its capability of producing antioxidative and anti-inflammatory compounds. Bioactivity guided fractionation of the extract from a mycelial culture led to the isolation of quercinol, which was identified as (-)-(2S)-2-hydroxymethyl-2-methyl-6-hydroxychromene 1 by NMR and X-ray analyses. The cryptic hydroquinone 1 shows a broad anti-inflammatory activity against cyclooxygenase 2 (COX-2), xanthine oxidase (XO), and horseradish peroxidase (HRP) at micromolar concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号