首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   10篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   17篇
  2014年   17篇
  2013年   19篇
  2012年   26篇
  2011年   21篇
  2010年   20篇
  2009年   11篇
  2008年   13篇
  2007年   17篇
  2006年   14篇
  2005年   17篇
  2004年   12篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
排序方式: 共有257条查询结果,搜索用时 500 毫秒
91.
This study addresses deep pore water chemistry in a permeable intertidal sand flat at the NW German coast. Sulphate, dissolved organic carbon (DOC), nutrients, and several terminal metabolic products were studied down to 5 m sediment depth. By extending the depth domain to several meters, insights into the functioning of deep sandy tidal flats were gained. Despite the dynamic sedimentological conditions in the study area, the general depth profiles obtained in the relatively young intertidal flat sediments of some metres depth are comparable to those determined in deep marine surface sediments. Besides diffusion and lithology which control pore water profiles in most marine surface sediments, biogeochemical processes are influenced by advection in the studied permeable intertidal flat sediments. This is supported by the model setup in which advection has to be implemented to reproduce pore water profiles. Water exchange at the sediment surface and in deeper sediment layers converts these permeable intertidal sediments into a “bio-reactor” where organic matter is recycled, and nutrients and DOC are released. At tidal flat margins, a hydraulic gradient is generated, which leads to water flow towards the creekbank. Deep nutrient-rich pore waters escaping at tidal flat margins during low tide presumably form a source of nutrients for the overlying water column in the study area. Significant correlations between the inorganic products of terminal metabolism (NH4 + and PO4 3−) and sulphate depletion suggest sulphate reduction to be the dominant pathway of anaerobic carbon remineralisation. Pore water concentrations of sulphate, ammonium, and phosphate were used to elucidate the composition of organic matter degraded in the sediment. Calculated C:N and C:P ratios were supported by model results.  相似文献   
92.
The cryptophyte Guillardia theta harbors a plastid surrounded by four membranes. This turns protein targeting of nucleus-encoded endosymbiont localized proteins into quite a challenge, as the respective precursors have to pass either all four membranes to reach the plastid stroma or only the outermost two membranes to enter the periplastidal compartment. Therefore two sets of nuclear-encoded proteins imported into the endosymbiont can be distinguished and their topogenic signals may serve as good indicators for studying protein targeting and subsequent transport across the outermost membranes of the cryptophyte plastid. We isolated genes encoding enzymes involved in two different biochemical pathways, both of which are predicted to be localized inside the periplastidal compartment, and compared their topogenic signals to those of precursor proteins for the plastid stroma, which are encoded on either the nucleus or the nucleomorph. By this and exemplary in vitro and in vivo analyses of the topogenic signal of one protein localized in the periplastidal compartment, we present new data implicating the mechanism of targeting and transport of proteins to and across the outermost plastid membranes. Furthermore, we demonstrate that one single, but conserved amino acid is the triggering key for the discrimination between nucleus-encoded plastid and periplastidal proteins. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   
93.

Background  

Mono-ADP-ribosyltransferase (ART) 1 belongs to a family of mammalian ectoenzymes that catalyze the transfer of ADP-ribose from NAD+ to a target protein. ART1 is predominantly expressed in skeletal and cardiac muscle. It ADP-ribosylates α7-integrin which together with β1-integrin forms a dimer and binds to laminin, a protein of the extracellular matrix involved in cell adhesion. This posttranslational modification leads to an increased laminin binding affinity.  相似文献   
94.
Genome editing facilitated by Cas9‐based RNA‐guided nucleases (RGNs) is becoming an increasingly important and popular technique for reverse genetics in both model and non‐model species. So far, RGNs were mainly applied for the induction of point mutations, and one major challenge consists in the detection of genome‐edited individuals from a mutagenized population. Also, point mutations are not appropriate for functional dissection of non‐coding DNA. Here, the multiplexing capacity of a newly developed genome editing toolkit was exploited for the induction of inheritable chromosomal deletions at six different loci in Nicotiana benthamiana and Arabidopsis. In both species, the preferential formation of small deletions was observed, suggesting reduced efficiency with increasing deletion size. Importantly, small deletions (<100 bp) were detected at high frequencies in N. benthamiana T0 and Arabidopsis T2 populations. Thus, targeting of small deletions by paired nucleases represents a simple approach for the generation of mutant alleles segregating as size polymorphisms in subsequent generations. Phenotypically selected deletions of up to 120 kb occurred at low frequencies in Arabidopsis, suggesting larger population sizes for the discovery of valuable alleles from addressing gene clusters or non‐coding DNA for deletion by programmable nucleases.  相似文献   
95.
96.
In this study a tiered hybrid life cycle assessment (LCA) multi‐objective optimization model is developed and applied to determine the optimal choice of new biorefinery technologies in Germany. Thereby, several aspects can be explicitly addressed, including a regionally differentiated accountability of sustainable feedstock availability, identification of environmental impacts along global value chains, and identification of trade‐offs between different sustainability goals. The model is applied to assess the optimal choice between two lignocellulosic biorefinery concepts. Two optimization objectives are taken into account: maximizing the investor's profit and minimizing global impacts on climate change related to a specified demand for products. In terms of environmental impacts, the model also takes into account the comparison of new biorefineries with current available technologies producing the specified final demand. The results of the case study show that the biorefinery concept including the ethylene production is more beneficial in terms of reducing climate impacts, while on the other hand the biorefinery including the ethanol production is more cost‐effective. Depending on the decision‐maker's preference on weighting the two objectives, different capacities of biorefineries and optimal locations in Germany are identified. Furthermore, regions in Germany providing the necessary biomass feedstock can be identified on a county level. Finally, we argue that the extension of LCA by multi‐objective optimization is well suited guiding the way toward well‐informed decision‐making in the field of technological choices.  相似文献   
97.
Increased vascular smooth muscle contractility in TRPC6-/- mice   总被引:12,自引:0,他引:12       下载免费PDF全文
Among the TRPC subfamily of TRP (classical transient receptor potential) channels, TRPC3, -6, and -7 are gated by signal transduction pathways that activate C-type phospholipases as well as by direct exposure to diacylglycerols. Since TRPC6 is highly expressed in pulmonary and vascular smooth muscle cells, it represents a likely molecular candidate for receptor-operated cation entry. To define the physiological role of TRPC6, we have developed a TRPC6-deficient mouse model. These mice showed an elevated blood pressure and enhanced agonist-induced contractility of isolated aortic rings as well as cerebral arteries. Smooth muscle cells of TRPC6-deficient mice have higher basal cation entry, increased TRPC-carried cation currents, and more depolarized membrane potentials. This higher basal cation entry, however, was completely abolished by the expression of a TRPC3-specific small interference RNA in primary TRPC6(-)(/)(-) smooth muscle cells. Along these lines, the expression of TRPC3 in wild-type cells resulted in increased basal activity, while TRPC6 expression in TRPC6(-/-) smooth muscle cells reduced basal cation influx. These findings imply that constitutively active TRPC3-type channels, which are up-regulated in TRPC6-deficient smooth muscle cells, are not able to functionally replace TRPC6. Thus, TRPC6 has distinct nonredundant roles in the control of vascular smooth muscle tone.  相似文献   
98.
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and on crystal structures of cAMP-bound R subunit and cyclic nucleotide-free Epac (exchange protein directly activated by cAMP), four amino acids were identified (Leu203, Tyr229, Arg239 and Arg241) and probed for cAMP binding to the R subunits and for R/C interaction. Arg239 and Arg241 (mutated to Ala and Glu) displayed no differences in the parameters investigated. In contrast, Leu203 (mutated to Ala and Trp) and Tyr229 (mutated to Ala and Thr) exhibited up to 30-fold reduced binding affinity for the C subunit and up to 120-fold reduced binding affinity for cAMP. Tyr229Asp showed the most severe effects, with 350-fold reduced affinity for cAMP and no detectable binding to the C subunit. Based on these results and structural data in the cAMP-binding domain, a switch mechanism via a hydrophobic core region is postulated that is comparable to an activation model proposed for Epac.  相似文献   
99.
Sequence alignment has been an invaluable tool for finding homologous sequences. The significance of the homology found is often quantified statistically by p-values. Theory for computing p-values exists for gapless alignments [Karlin, S., Altschul, S.F., 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264–2268; Karlin, S., Dembo A., 1992. Limit distributions of maximal segmental score among Markov-dependent partial sums. Adv. Appl. Probab. 24, 13–140], but a full generalization to alignments with gaps is not yet complete. We present a unified statistical analysis of two common sequence comparison algorithms: maximum-score (Smith-Waterman) alignments and their generalized probabilistic counterparts, including maximum-likelihood alignments and hidden Markov models. The most important statistical characteristic of these algorithms is the distribution function of the maximum score S max, resp. the maximum free energy F max, for mutually uncorrelated random sequences. This distribution is known empirically to be of the Gumbel form with an exponential tail P(S max > x) ∼ exp(−λx) for maximum-score alignment and P(F max > x) ∼ exp(−λx) for some classes of probabilistic alignment. We derive an exact expression for λ for particular probabilistic alignments. This result is then used to obtain accurate λ values for generic probabilistic and maximum-score alignments. Although the result demonstrated uses a simple match-mismatch scoring system, it is expected to be a good starting point for more general scoring functions.  相似文献   
100.
Signaling pathways targeting mitochondria are poorly understood. We here examine phosphorylation by the cAMP-dependent pathway of subunits of cytochrome c oxidase (COX), the terminal enzyme of the electron transport chain. Using anti-phospho antibodies, we show that cow liver COX subunit I is tyrosinephosphorylated in the presence of theophylline, a phosphodiesterase inhibitor that creates high cAMP levels, but not in its absence. The site of phosphorylation, identified by mass spectrometry, is tyrosine 304 of COX catalytic subunit I. Subunit I phosphorylation leads to a decrease of V(max) and an increase of K(m) for cytochrome c and shifts the reaction kinetics from hyperbolic to sigmoidal such that COX is fully or strongly inhibited up to 10 mum cytochrome c substrate concentrations, even in the presence of allosteric activator ADP. To assess our findings with the isolated enzyme in a physiological context, we tested the starvation signal glucagon on human HepG2 cells and cow liver tissue. Glucagon leads to COX inactivation, an effect also observed after incubation with adenylyl cyclase activator forskolin. Thus, the glucagon receptor/G-protein/cAMP pathway regulates COX activity. At therapeutic concentrations used for asthma relief, theophylline causes lung COX inhibition and decreases cellular ATP levels, suggesting a mechanism for its clinical action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号