首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1614篇
  免费   187篇
  2022年   9篇
  2021年   30篇
  2020年   14篇
  2019年   14篇
  2018年   13篇
  2017年   11篇
  2016年   23篇
  2015年   65篇
  2014年   53篇
  2013年   84篇
  2012年   87篇
  2011年   92篇
  2010年   45篇
  2009年   47篇
  2008年   90篇
  2007年   77篇
  2006年   85篇
  2005年   72篇
  2004年   58篇
  2003年   76篇
  2002年   59篇
  2001年   60篇
  2000年   62篇
  1999年   54篇
  1998年   24篇
  1997年   21篇
  1996年   19篇
  1995年   23篇
  1994年   25篇
  1993年   21篇
  1992年   27篇
  1991年   22篇
  1990年   35篇
  1989年   28篇
  1988年   28篇
  1987年   18篇
  1986年   15篇
  1985年   18篇
  1984年   17篇
  1983年   16篇
  1982年   9篇
  1981年   13篇
  1979年   20篇
  1978年   15篇
  1977年   13篇
  1976年   10篇
  1975年   8篇
  1974年   8篇
  1973年   12篇
  1972年   8篇
排序方式: 共有1801条查询结果,搜索用时 15 毫秒
191.
Tumor necrosis factor (TNF) plays a dual role in neurodegenerative diseases. Whereas TNF receptor (TNFR) 1 is predominantly associated with neurodegeneration, TNFR2 is involved in tissue regeneration and neuroprotection. Accordingly, the availability of TNFR2-selective agonists could allow the development of new therapeutic treatments of neurodegenerative diseases. We constructed a soluble, human TNFR2 agonist (TNC-scTNF(R2)) by genetic fusion of the trimerization domain of tenascin C to a TNFR2-selective single-chain TNF molecule, which is comprised of three TNF domains connected by short peptide linkers. TNC-scTNF(R2) specifically activated TNFR2 and possessed membrane-TNF mimetic activity, resulting in TNFR2 signaling complex formation and activation of downstream signaling pathways. Protection from neurodegeneration was assessed using the human dopaminergic neuronal cell line LUHMES. First we show that TNC-scTNF(R2) interfered with cell death pathways subsequent to H(2)O(2) exposure. Protection from cell death was dependent on TNFR2 activation of the PI3K-PKB/Akt pathway, evident from restoration of H(2)O(2) sensitivity in the presence of PI3K inhibitor LY294002. Second, in an in vitro model of Parkinson disease, TNC-scTNF(R2) rescues neurons after induction of cell death by 6-OHDA. Since TNFR2 is not only promoting anti-apoptotic responses but also plays an important role in tissue regeneration, activation of TNFR2 signaling by TNC-scTNF(R2) appears a promising strategy to ameliorate neurodegenerative processes.  相似文献   
192.
The growth of microorganisms may be limited by operating conditions which provide an inadequate supply of oxygen. To determine the oxygen-transfer capacities of small-scale bioreactors such as shaking flasks, test tubes, and microtiter plates, a noninvasive easy-to-use optical method based on sulfite oxidation has been developed. The model system of sodium sulfite was first optimized in shaking-flask experiments for this special application. The reaction conditions (pH, buffer, and catalyst concentration) were adjusted to obtain a constant oxygen transfer rate for the whole period of the sulfite oxidation reaction. The sharp decrease of the pH at the end of the oxidation, which is typical for this reaction, is visualized by adding a pH dye and used to measure the length of the reaction period. The oxygen-transfer capacity can then be calculated by the oxygen consumed during the complete stoichiometric transformation of sodium sulfite and the visually determined reaction time. The suitability of this optical measuring method for the determination of oxygen-transfer capacities in small-scale bioreactors was confirmed with an independent physical method applying an oxygen electrode. The correlation factor for the maximum oxygen-transfer capacity between the chemical model system and a culture of Pseudomonas putida CA-3 was determined in shaking flasks. The newly developed optical measuring method was finally used for the determination of oxygen-transfer capacities of different types of transparent small-scale bioreactors.  相似文献   
193.
Radioactive tracer work showed that nomilinoate A-ring lactone was the predominant, if not the only, limonoid biosynthesized and accumulated in seedlings of lemon, Valencia orange, grapefruit and tangerine. Lemon seedlings were excellent tools for biosynthetic preparation of [14C]nomilin.  相似文献   
194.
195.
196.
197.
Dynamic properties of type IV pili are essential for their function in bacterial infection, twitching motility and gene transfer. Laser tweezers are versatile tools to study the molecular mechanism underlying pilus dynamics at the single molecule level. Recently, these optical tweezers have been used to monitor pilus elongation and retraction in vivo at a resolution of several nanometers. The force generated by type IV pili exceeds 100 pN making pili the strongest linear motors characterized to date. The study of pilus dynamics at the single molecule level sheds light on kinetics, force generation, switching and mechanics of the Neisseria gonorrhoeae pilus motor.  相似文献   
198.
Reduced glutathione (GSH), a major antioxidant and modulator of cell proliferation, is decreased in the bronchoalveolar lavage fluid (BALF) of cystic fibrosis (CF) patients. We previously have shown that GSH inhalation in CF patients significantly increased GSH levels in BALF and improved lung function (M. Griese et al., 2004, Am. J. Respir. Crit. Care Med.169, 822-828). GSH depletion in vitro enhances susceptibility to oxidative stress, increases inflammatory cytokine release, and impairs T cell responses. We therefore hypothesized that an increase in GSH in BALF reduces oxidative stress, decreases inflammation, and modulates T cell responses in lungs of CF patients. BALF from 17 CF patients (median FEV1 67% (43-105%) of predicted) was assessed before and after GSH inhalation for total protein, markers of oxidative stress (8-isoprostane, myeloperoxidase, and ascorbic and uric acid), pattern of protein oxidation, prostaglandin E2 (PGE2), and proinflammatory cytokines. BALF cells were differentiated using cytospin slides, and lymphocytes were further analyzed by flow cytometry. Inhalation of GSH decreased BALF levels of PGE2 and increased CD4+ and CD8+ lymphocytes in BALF significantly but had no effect on markers of oxidative stress. BALF lymphocytes correlated positively with lung function, whereas levels of PGE2 showed an inverse correlation. The patients with the greatest improvement in lung function after GSH treatment also had the largest decline in PGE2 levels. We conclude that GSH inhalation in CF patients increases lymphocytes and suppresses PGE2 in the bronchoalveolar space. Thus, GSH primarily affected the pulmonary immune response rather than the oxidative status in CF patients. The effect of GSH inhalation on PGE2 levels and lymphocytes in CF warrants further investigation.  相似文献   
199.
In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the capacity of particles to oxidize methionine in a cell-free in vitro system for determination of their innate oxidative potential and by alveolar macrophages (AMs) to determine production of arachidonic acid (AA), including formation of prostaglandin E2 (PGE2), leukotriene B4 (LTB4), reactive oxygen species (ROS), and oxidative stress marker 8-isoprostane. EC exhibiting high oxidative potential induced generation of AA, PGE2, LTB4, and 8-isoprostane in canine and human AMs. Printex 90, Printex G, and DEP, showing low oxidative capacity, still induced formation of AA and PGE2, but not that of LTB4 or 8-isoprostane. Aging of EC lowered oxidative potential while still inducing production of AA and PGE2 but not that of LTB4 and 8-isoprostane. Cellular ROS production was stimulated by all particles independent of oxidative potential. Particle-induced formation of AA metabolites and ROS was dependent on mitogen-activated protein kinase kinase 1 activation of cytosolic phospholipase A2 (cPLA2) as shown by inhibitor studies. In conclusion, cPLA2, PGE2, and ROS formation was activated by all particle types, whereas LTB4 production and 8-isoprostane were strongly dependent on particles' oxidative potential. Physical and chemical parameters of particle surface correlated with oxidative potential and stimulation of AM PGE2 and 8-isoprostane production.  相似文献   
200.
Beryllium (Be), the etiologic agent of chronic beryllium disease, is a toxic metal that induces apoptosis in human alveolar macrophages. We tested the hypothesis that Be stimulates the formation of reactive oxygen species (ROS) which plays a role in Be-induced macrophage apoptosis. Mouse macrophages were exposed to 100 microM BeSO4 in the absence and presence of the catalytic antioxidant MnTBAP (100 microM). Apoptosis was measured as the percentage of TUNEL+ and caspase-8+ cells. ROS production was measured by flow cytometry using the fluorescence probes, dihydroethidine (DHE) and dichlorofluorescein diacetate (DCFH-DA). Be-exposed macrophages had increased TUNEL+ cells (15+/-1% versus controls 1+/-0.2%, P<0.05) and increased caspase-8+ cells (18.7+/-2% versus controls 1.8+/-0.4%, P<0.05). Be-induced caspase-8 activation, and a 4-fold increase in ROS formation, was ameliorated by exposure to MnTBAP. Hydrogen peroxide (30 microM) exposure potentiated Be-induced caspase-8 activation, and was also attenuated by MnTBAP. Our data are the first to demonstrate that Be stimulates macrophage ROS formation which plays an important role in Be-induced macrophage apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号