首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1642篇
  免费   190篇
  1832篇
  2022年   8篇
  2021年   28篇
  2020年   16篇
  2019年   21篇
  2018年   14篇
  2017年   10篇
  2016年   21篇
  2015年   70篇
  2014年   57篇
  2013年   90篇
  2012年   92篇
  2011年   100篇
  2010年   44篇
  2009年   47篇
  2008年   88篇
  2007年   79篇
  2006年   83篇
  2005年   68篇
  2004年   55篇
  2003年   76篇
  2002年   60篇
  2001年   59篇
  2000年   62篇
  1999年   52篇
  1998年   22篇
  1997年   21篇
  1996年   21篇
  1995年   22篇
  1994年   25篇
  1993年   23篇
  1992年   27篇
  1991年   22篇
  1990年   33篇
  1989年   27篇
  1988年   31篇
  1987年   18篇
  1986年   15篇
  1985年   18篇
  1984年   17篇
  1983年   15篇
  1982年   10篇
  1981年   12篇
  1979年   20篇
  1978年   15篇
  1977年   13篇
  1976年   11篇
  1975年   8篇
  1974年   9篇
  1973年   12篇
  1972年   8篇
排序方式: 共有1832条查询结果,搜索用时 15 毫秒
991.
Upon receptor-mediated activation, the gp41 hydrophobic, conserved fusion peptide inserts into the target membrane and promotes the kind of perturbations required for the progression of the HIV-cell fusion reaction. Using a synthetic combinatorial library we have identified all d-amino acid hexapeptide sequences that inhibited the fusion peptide capacity of perturbing model membranes. Two hexapeptides that effectively inhibited the fusion peptide in these systems were subsequently shown to inhibit cell-cell fusion promoted by gp41 expressed at cell surfaces. These observations might be of importance for understanding the mechanisms underlying fusion peptide activity and suggest new strategies for screening compounds that target these viral sequences.  相似文献   
992.
A rapid purification procedure for large scale preparations of yeast proteinase B inhibitors 1 and 2 (IB1 and IB2) is described. By disc gel electrophoresis, amino acid analysis, and end-group determinations, each of the inhibitors is homogeneous. Both inhibitors are polypeptides with molecular weights of 8,500, containing 74 residues. No components other than amino acids could be detected. There is no significant difference in the amino acid compositions of the two inhibitors as analyzed after acid hydrolysis. Both polypeptides are characterized by the total absence of arginine, tryptophan, and sulfur-containing amino acid residues. The proteinase B inhibitors of yeast, therefore, differ fundamentally from proteinase inhibitors of many other organisms, which generally contain a large number of disulfide bridges. Both proteinase B inhibitors have threonine as the NH2-terminal residue and -Val-His-Thr-Asn-COO- as the COOH-terminal sequence. Comparison of peptide maps after tryptic digestion reveals that the two inhibitors differ definitely in only a few tryptic peptides. The inhibitors are rapidly inactivated by digestion with carboxypeptidase A from bovine pancreas at pH 8.5. Inactivation occurs stoichiometrically with the release of threonine, the penultimate residue at the COOH-terminal end of both inhibitors.  相似文献   
993.
994.
Dynamitin is a commonly used inhibitor of cytoplasmic dynein-based motility in living cells. Dynamitin does not inhibit dynein directly but instead acts by causing disassembly of dynactin, a multiprotein complex required for dynein-based movement. In dynactin, dynamitin is closely associated with the subunits p150(Glued) and p24, which together form the shoulder and projecting arm structures of the dynactin molecule. In this study, we explore the way in which exogenous dynamitin effects dynactin disruption. We find that pure, recombinant dynamitin is an elongated protein with a strong propensity for self-assembly. Titration experiments reveal that free dynamitin binds dynactin before it causes release of subunits. When dynamitin is added to dynactin at an equimolar ratio of exogenous dynamitin subunits to endogenous dynamitin subunits (1x= 4 mol of exogenous dynamitin per mole of dynactin), exogenous dynamitin exchanges with endogenous dynamitin, and partial release of p150(Glued) is observed. When added in vast excess (> or =25x; 100 mol of exogenous dynamitin per mole of dynactin), recombinant dynamitin causes complete release of both p150(Glued) subunits, two dynamitins and one p24, but not other dynactin subunits. Our data suggest that dynamitin mediates disruption of dynactin by binding to endogenous dynamitin subunits. This binding destabilizes the shoulder structure that links the p150(Glued) arm to the Arp1 filament and leads to subunit release.  相似文献   
995.
The nickel-containing enzymes hydrogenase and urease require accessory proteins in order to incorporate properly the nickel atom(s) into the active sites. The Helicobacter pylori genome contains the full complement of both urease and hydrogenase accessory proteins. Two of these, the hydrogenase accessory proteins HypA (encoded by hypA) and HypB (encoded by hypB), are required for the full activity of both the hydrogenase and the urease enzymes in H. pylori. Under normal growth conditions, hydrogenase activity is abolished in strains in which either hypA (HypA:kan) or hypB (HypB:kan) have been interrupted by a kanamycin resistance cassette. Urease activity in these strains is 40 (HypA:kan)- and 200 (HypB:kan)-fold lower than for the wild-type (wt) strain 43504. Nickel supplementation in the growth media restored urease activity to almost wt levels. Hydrogenase activity was restored to a lesser extent, as has been observed for hyp mutants in other (H(2)-oxidizing) bacteria. Expression levels of UreB (the urease large subunit) were not affected by inactivation of either hypA or hypB, as determined by immunoblotting. Urease activity was not affected by lesions in the genes for either the hydrogenase accessory proteins HypD or HypF or the hydrogenase large subunit structural gene, indicating that the urease deficiency was not caused by lack of hydrogenase activity. When crude extracts of wt, HypA:kan and HypB:kan were separated by anion exchange chromatography, the urease-containing fractions of the mutant strains contained about four (HypA:kan)- and five (HypB:kan)-fold less nickel than did the urease from wt, indicating that the lack of urease activity in these strains results from a nickel deficiency in the urease enzyme.  相似文献   
996.
Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide reductase (Msr). Catalase is an important antioxidant enzyme; we show it constitutes 4-5% of the total Helicobacter pylori protein levels. msr and katA strains were about 14- and 4-fold, respectively, more susceptible than the parent to killing by the neutrophil cell line HL-60 cells. Catalase activity of an msr strain was much more reduced by HOCl exposure than for the parental strain. Treatment of pure catalase with HOCl caused oxidation of specific MS-identified Met residues, as well as structural changes and activity loss depending on the oxidant dose. Treatment of catalase with HOCl at a level to limit structural perturbation (at a catalase/HOCl molar ratio of 1:60) resulted in oxidation of six identified Met residues. Msr repaired these residues in an in vitro reconstituted system, but no enzyme activity could be recovered. However, addition of GroEL to the Msr repair mixture significantly enhanced catalase activity recovery. Neutrophils produce large amounts of HOCl at inflammation sites, and bacterial catalase may be a prime target of the host inflammatory response; at high concentrations of HOCl (1:100), we observed loss of catalase secondary structure, oligomerization, and carbonylation. The same HOCl-sensitive Met residue oxidation targets in catalase were detected using chloramine-T as a milder oxidant.  相似文献   
997.
Twelve Tn5-induced mutants of Bradyrhizobium japonicum unable to grow chemoautotrophically with CO(2) and H(2) (Aut) were isolated. Five Aut mutants lacked hydrogen uptake activity (Hup). The other seven Aut mutants possessed wild-type levels of hydrogen uptake activity (Hup), both in free-living culture and symbiotically. Three of the Hup mutants lacked hydrogenase activity both in free-living culture and as nodule bacteroids. The other two mutants were Hup only in free-living culture. The latter two mutants appeared to be hypersensitive to repression by oxygen, since Hup activity could be derepressed under 0.4% O(2). All five Hup mutants expressed both ex planta and symbiotic nitrogenase activities. Two of the seven Aut Hup mutants expressed no free-living nitrogenase activity, but they did express it symbiotically. These two strains, plus one other Aut Hup mutant, had CO(2) fixation activities 20 to 32% of the wild-type level. The cosmid pSH22, which was shown previously to contain hydrogenase-related genes of B. japonicum, was conjugated into each Aut mutant. The Aut Hup mutants that were Hup both in free-living culture and symbiotically were complemented by the cosmid. None of the other mutants was complemented by pSH22. Individual subcloned fragments of pSH22 were used to complement two of the Hup mutants.  相似文献   
998.
Eight gibberellins (GAs) were identified from vegetative shoots of navel orange trees (Citrus sinensis L. Osbeck cv Washington) after sequential purification by reverse-phase C18 high performance liquid chromatography, Nucleosil 5N(CH3)2 high performance liquid chromatography, and capillary gas chromatography-mass spectrometry. GA1, GA17, GA19, GA20, GA29, and iso-GA3 were identified based on the full scan mass spectra and Kovats retention indices. GA8 was tentatively identified based on the comparison of the full scan mass spectra with the published spectra. GA44 was tentatively identified from the characteristic masses at the correct Kovats retention index.  相似文献   
999.
Certain kinetoplastid (Leishmania spp. and Tryapnosoma cruzi) and apicomplexan parasites (Plasmodium falciparum and Toxoplasma gondii) are capable of invading human cells as part of their pathology. These parasites appear to have evolved a relatively expanded or diverse complement of genes encoding molecular chaperones. The gene families encoding heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp70) chaperones show significant expansion and diversity (especially for Leishmania spp. and T. cruzi), and in particular the Hsp40 family appears to be an extreme example of phylogenetic radiation. In general, Hsp40 proteins act as co-chaperones of Hsp70 chaperones, forming protein folding pathways that integrate with Hsp90 to ensure proteostasis in the cell. It is tempting to speculate that the diverse environmental insults that these parasites endure have resulted in the evolutionary selection of a diverse and expanded chaperone network. Hsp90 is involved in development and growth of all of these intracellular parasites, and so far represents the strongest candidate as a target for chemotherapeutic interventions. While there have been some excellent studies on the molecular and cell biology of Hsp70 proteins, relatively little is known about the biological function of Hsp70-Hsp40 interactions in these intracellular parasites. This review focuses on intracellular protozoan parasites of humans, and provides a critique of the role of heat shock proteins in development and pathogenesis, especially the molecular chaperones Hsp90, Hsp70 and Hsp40.  相似文献   
1000.
Changes in the isoenzyme patterns and activities of the two enzymes creatine kinase (CPK) and fructose diphosphate aldolase have been followed during the course of differentiation of chick skeletal muscle cells in vitro. The characteristic isoenzyme transitions of both of these enzymes known to occur in developing muscle in situ can be demonstrated in extracts of cultured myogenic cells by cellulose polyacetate electrophoresis followed by specific enzymatic staining: MM-CPK replaces the embryonic BB-CPK, while aldolase isoenzymes containing A subunits replace the C-containing forms which predominate at earlier stages. The specific activities of both enzymes increase during in vitro differentiation. Although the major part of these concomitant changes occurs after myoblast fusion has reached a maximum level, analysis of their timing relative to the process of fusion indicates that the increases in the activities of both enzymes, as well as the accumulation of nuclei within myotubes, proceed exponentially from the beginning of the second day in culture. Fusion and enzyme accumulation are unaffected by addition of dibutyryl cyclic AMP (1 × 10?4M) to the medium. In calcium-deficient medium, or in media containing 5-bromodeoxyuridine (BrdUrd) at concentrations from 0.2 to 7 × 10?5M, fusion is almost completely blocked, while cell viability is maintained. The CPK and aldolase isoenzyme transitions fail to occur normally in both fusion-preventing media. This blockage of the normal differentiative changes is, however, less complete in the calcium-deficient cultures, which, in contrast to the BrdUrd containing cultures, contained a number of long bipolar cells thought to be able to differentiate without fusion. These results are interpreted as indicating that for most, but possibly not for all, myogenic cells in typical primary muscle cell cultures, fusion is a prerequisite for the parallel differentiative changes in CPK and aldolase isoenzymes. The possibility is discussed that a “cluster” of proteins, including CPK and aldolase, may be coordinately regulated during myogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号