首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   10篇
  255篇
  2020年   1篇
  2019年   1篇
  2018年   8篇
  2017年   6篇
  2016年   13篇
  2015年   18篇
  2014年   23篇
  2013年   24篇
  2012年   10篇
  2011年   7篇
  2010年   15篇
  2009年   11篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   9篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   4篇
  1975年   9篇
  1974年   1篇
  1973年   5篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   8篇
  1966年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
31.
The tagging‐via‐substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide‐modified farnesyl moiety and captured thanks to biotin alkyne Click‐iT® chemistry with further streptavidin‐affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C‐terminal CaaX‐box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes.  相似文献   
32.
33.
In the present article the influence of salts and additives, such as trehalose, NaCl, ornithine, sodium phosphate and ammonium sulphate, on ornithine carbamoyltransferase (OCTase) is investigated in order to study the OCTase stabilization process as a function of solutes and to point out the fundamental role played by an enhancement of hydrophobic interactions. The synergic use of different techniques, such as neutron spectroscopy, UV–vis spectroscopy, activity and thermal measurements, allows to highlight the cosolute capability to avoid thermal inactivation, to induce important changes in secondary and tertiary enzyme structure and to stabilize biological macromolecules.  相似文献   
34.

Background

The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction.

Methodology/Principal Findings

Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death.

Conclusion/Significance

BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains.  相似文献   
35.
Scrapie is a prion disease for which no means of ante-mortem diagnosis is available. We recently found a relationship between cell susceptibility to scrapie and altered cholesterol homeostasis. In brains and in skin fibroblasts and peripheral blood mononuclear cells from healthy and scrapie-affected sheep carrying a scrapie-susceptible genotype, the levels of cholesterol esters were consistently higher than in tissues and cultures derived from animals with a scrapie-resistant genotype. Here we show that intracellular accumulation of cholesterol esters (CE) in fibroblasts derived from scrapie-susceptible sheep was accompanied by parallel alterations in the expression level of acyl-coenzymeA: cholesterol-acyltransferase (ACAT1) and caveolin-1 (Cav-1) that are involved in the pathways leading to intracellular cholesterol esterification and trafficking. Comparative analysis of cellular prion protein (PrPc) mRNA, showed an higher expression level in cells from animals carrying a susceptible genotype, with or without Scrapie. These data suggest that CE accumulation in peripheral cells, together with the altered expression of some proteins implicated in intracellular cholesterol homeostasis, might serve to identify a distinctive lipid metabolic profile associated with increased susceptibility to develop prion disease following infection.  相似文献   
36.
Platelets modulate vascular system integrity, and their loss is critical in haematological pathologies and after chemotherapy. Therefore, identification of molecules enhancing platelet production would be useful to counteract thrombocytopenia. We have previously shown that 2-arachidonoylglycerol (2-AG) acts as a true agonist of platelets, as well as it commits erythroid precursors toward the megakaryocytic lineage. Against this background, we sought to further interrogate the role of 2-AG in megakaryocyte/platelet physiology by investigating terminal differentiation, and subsequent thrombopoiesis. To this end, we used MEG-01 cells, a human megakaryoblastic cell line able to produce in vitro platelet-like particles.

2-AG increased the number of cells showing ruffled surface and enhanced surface expression of specific megakaryocyte/platelet surface antigens, typical hallmarks of terminal megakaryocytic differentiation and platelet production. Changes in cytoskeleton modeling also occurred in differentiated megakaryocytes and blebbing platelets. 2-AG acted by binding to CB1 and CB2 receptors, because specific antagonists reverted its effect. Platelets were split off from megakaryocytes and were functional: they contained the platelet-specific surface markers CD61 and CD49, whose levels increased following stimulation with a natural agonist like collagen. Given the importance of 2-AG for driving megakaryopoiesis and thrombopoiesis, not surprisingly we found that its hydrolytic enzymes were tightly controlled by classical inducers of megakaryocyte differentiation.

In conclusion 2-AG, by triggering megakaryocyte maturation and platelet release, may have clinical efficacy to counteract thrombocytopenia-related diseases.  相似文献   

37.
Mutations in the CETP gene resulting in defective CETP activity have been shown to cause remarkable elevations of plasma HDL-C levels, with the accumulation in plasma of large, buoyant HDL particles enriched in apolipoprotein E. Genetic CETP deficiency thus represents a unique tool to evaluate how structural alterations of HDL impact on HDL atheroprotective functions. Aim of the present study was to assess the ability of HDL obtained from CETP-deficient subjects to protect endothelial cells from the development of endothelial dysfunction. HDL isolated from one homozygous and seven heterozygous carriers of CETP null mutations were evaluated for their ability to down-regulate cytokine-induced cell adhesion molecule expression and to promote NO production in cultured endothelial cells. When compared at the same protein concentration, HDL and HDL3 from carriers proved to be as effective as control HDL and HDL3 in down-regulating cytokine-induced VCAM-1, while carrier HDL2 were more effective than control HDL2 in inhibiting VCAM-1 expression. On the other hand, HDL and HDL fractions from carriers of CETP deficiency were significantly less effective than control HDL and HDL fractions in stimulating NO production, due to a reduced eNOS activating capacity, likely because of a reduced S1P content. In conclusion, the present findings support the notion that genetic CETP deficiency, by affecting HDL particle structure, impacts on HDL vasculoprotective functions. Understanding of these effects might be important for predicting the outcomes of pharmacological CETP inhibition.  相似文献   
38.
Phenylketonuria (PKU), if not detected and treated in newborns, causes severe neurological dysfunction and cognitive and behavioral deficiencies. Despite the biochemical characterization of PKU, the molecular mechanisms underlying PKU‐associated brain dysfunction remain poorly understood. The aim of this study was to gain insights into the pathogenesis of this neurological damage by analyzing protein expression profiles in brain tissue of Black and Tan BRachyury‐PahEnu2 mice (a mouse model of PKU). We compared the cerebral protein expression of homozygous PKU mice with that of their heterozygous counterparts using two‐dimensional difference gel electrophoresis analysis, and identified 21 differentially expressed proteins, four of which were over‐expressed and 17 under‐expressed. An in silico bioinformatic approach indicated that protein under‐expression was related to neuronal differentiation and dendritic growth, and to such neurological disorders as progressive motor neuropathy and movement disorders. Moreover, functional annotation analyses showed that some identified proteins were involved in oxidative metabolism. To further investigate the proteins involved in the neurological damage, we validated two of the proteins that were most strikingly under‐expressed, namely, Syn2 and Dpysl2, which are involved in synaptic function and neurotransmission. We found that Glu2/3 and NR1 receptor subunits were over‐expressed in PKU mouse brain. Our results indicate that differential expression of these proteins may be associated with the processes underlying PKU brain dysfunction, namely, decreased synaptic plasticity and impaired neurotransmission.

  相似文献   

39.
West Nile virus (WNV) is a mosquito-borne flavivirus that infects humans and other mammals. In some cases WNV causes severe neurological disease. During recent years, outbreaks of WNV are increasing in worldwide distribution and novel genetic variants of the virus have been detected. Although a substantial amount of data exists on WNV infections in rodent models, little is known about early events during WNV infection in primates, including humans. To gain a deeper understanding of this process, we performed experimental infections of rhesus macaques and common marmosets with a virulent European WNV strain (WNV-Ita09) and monitored virological, hematological, and biochemical parameters. WNV-Ita09 productively infected both monkey species, with higher replication and wider tissue distribution in common marmosets compared to rhesus macaques. The animals in this study however, did not develop clinical signs of WNV disease, nor showed substantial deviations in clinical laboratory parameters. In both species, the virus induced a rapid CD56dimCD16bright natural killer response, followed by IgM and IgG antibody responses. The results of this study show that healthy rhesus macaques and common marmosets are promising animal models to study WNV-Ita09 infection. Both models may be particularly of use to evaluate potential vaccine candidates or to investigate WNV pathogenesis.  相似文献   
40.
Aldolase C is a brain-specific glycolytic isozyme whose complete repertoire of functions are obscure. This lack of knowledge can be addressed using molecular tools that discriminate the protein from the homologous, ubiquitous paralog aldolase A. The anti-aldolase C antibodies currently available are polyclonal and not highly specific. We obtained the novel monoclonal antibody 9F against human aldolase C, characterized its isoform specificity and tested its performance. First, we investigated the specificity of 9F for aldolase C. Then, using bioinformatic tools coupled to molecular cloning and chemical synthesis approaches, we produced truncated human aldolase C fragments, and assessed 9F binding to these fragments by western blot and ELISA assays. This strategy revealed that residues 85–102 harbor the epitope-containing region recognized by 9F. The efficiency of 9F was demonstrated also for immunoprecipitation assays. Finally, surface plasmon resonance revealed that the protein has a high affinity toward the epitope-containing peptide. Taken together, our findings show that epitope recognition is sequence-driven and is independent of the three-dimensional structure. In conclusion, given its specific molecular interaction, 9F is a novel and powerful tool to investigate aldolase C’s functions in the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号