首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   64篇
  915篇
  2023年   5篇
  2022年   15篇
  2021年   21篇
  2020年   22篇
  2019年   23篇
  2018年   33篇
  2017年   42篇
  2016年   47篇
  2015年   56篇
  2014年   58篇
  2013年   57篇
  2012年   60篇
  2011年   59篇
  2010年   38篇
  2009年   33篇
  2008年   41篇
  2007年   48篇
  2006年   37篇
  2005年   34篇
  2004年   30篇
  2003年   23篇
  2002年   22篇
  2001年   7篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   4篇
  1979年   7篇
  1978年   3篇
  1976年   11篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1957年   1篇
排序方式: 共有915条查询结果,搜索用时 15 毫秒
41.
We assessed fluconazole susceptibility in 52 Candida tropicalis clinical strains using seven antifungal susceptibility methods, including broth microdilution (BMD) [standard M27 A3 (with neutral and acid pH), ATB Fungus 3, Vitek 2 system and flow cytometric analysis] and agar-based methods (disk diffusion and E-test). Trailing growth, detection of cell-associated secreted aspartic proteases (Saps) and morphological and ultrastructural traits of these clinical strains were also examined. The ranges of fluconazole 24 h-minimum inhibitory concentration (MIC) values were similar among all methods. The essential agreement among the methods used for MIC determinations was excellent and all methods categorised all strains as susceptible, except for one strain that showed a minor error. The presence of the trailing effect was assessed by six methods. Trailing positivity was observed for 86.5-100% of the strains. The exception was the BMD-Ac method where trailing growth was not observed. Morphological and ultrastructural alterations were detected in C. tropicalis trailing cells, including mitochondrial swelling and cell walls with irregular shapes. We tested the production of Saps in 13 C. tropicalis strains expressing trailing growth through flow cytometry. Our results showed that all of the C. tropicalis strains up-regulated surface Sap expression after 24 h or 48 h of exposure to fluconazole, which was not observed in untreated yeast strains. We concluded that C. tropicalis strains expressing trailing growth presented some particular features on both biological and ultrastructural levels.  相似文献   
42.
43.
The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.  相似文献   
44.
Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections.  相似文献   
45.
The relationship between functional and taxonomic diversity is a major issue in ecology. Biodiversity in aquatic environments is strongly influenced by environmental gradients that act as dispersion and niche barriers. Environmental conditions act as filters to select functional traits, but biotic interactions also play a role in assemblage structure. In headwater streams, the relationship between functional and taxonomic diversity remains unclear. In this study we investigated how environmental conditions, taxonomic diversity and biotic interactions influence the spatial distribution of traits and functional diversity in stream fish species. Standardized sampling of fish species was carried out in 50 m sections of 16 streams located in rainforest enclaves in a semiarid region of Brazil (Caatinga biome). The functional diversity indices displayed different responses to the predictor variables used. Functional richness was mainly influenced by environmental conditions, while functional evenness was mostly determined by taxonomic diversity. On the other hand, functional dispersion was explained by a combination of environmental conditions and taxonomic diversity. The spatial distribution of fish species with the same functional traits was random, indicating that biotic interactions are not a strong predictor in these ecosystems. Channel width, pH and substrate were the most important variables in the spatial distribution of the functional traits of the fish species. Our results suggest that the functional structure of fish assemblages in headwater streams depends mainly on environmental conditions and taxonomic diversity.  相似文献   
46.
Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.  相似文献   
47.
ABCA1 is an ATP-binding cassette protein that transports cellular cholesterol and phospholipids onto high density lipoproteins (HDL) in plasma. Lack of ABCA1 in humans and mice causes abnormal lipidation and increased catabolism of HDL, resulting in very low plasma apoA-I, apoA-II, and HDL. Herein, we have used Abca1-/- mice to ask whether ABCA1 is involved in lipidation of HDL in the central nervous system (CNS). ApoE is the most abundant CNS apolipoprotein and is present in HDL-like lipoproteins in CSF. We found that Abca1-/- mice have greatly decreased apoE levels in both the cortex (80% reduction) and the CSF (98% reduction). CSF from Abca1-/- mice had significantly reduced cholesterol as well as small apoE-containing lipoproteins, suggesting abnormal lipidation of apoE. Astrocytes, the primary producer of CNS apoE, were cultured from Abca1+/+, +/-, and -/- mice, and nascent lipoprotein particles were collected. Abca1-/- astrocytes secreted lipoprotein particles that had markedly decreased cholesterol and apoE and had smaller apoE-containing particles than particles from Abca1+/+ astrocytes. These findings demonstrate that ABCA1 plays a critical role in CNS apoE metabolism. Since apoE isoforms and levels strongly influence Alzheimer's disease pathology and risk, these data suggest that ABCA1 may be a novel therapeutic target.  相似文献   
48.
Since the emergence of West Nile virus (WNV) in North America in 1999, there have been several reports of WNV activity in Central and South American countries. To detect WNV in Brazil, we performed a serological survey of horses from different regions of Brazil using recombinant peptides from domain III of WNV. Positive samples were validated with the neutralisation test. Our results showed that of 79 ELISA-positive horses, nine expressed WNV-specific neutralising antibodies. Eight of the infected horses were from the state of Mato Grosso do Sul and one was from the state of Paraíba. Our results provide additional evidence for the emergence of WNV in Brazil and for its circulation in multiple regions of the country.  相似文献   
49.
Rubus imperialis, Artemia salina, 3-O-methylellagic-4'-O-alpha-rhamnose Acid Screening of different extracts, fractions and compounds from Rubus imperialis Chum. Schl. (Rosaceae) has been conduced using the brine shrimp microwell cytotoxicity assay. Three parts of the plant (methanolic extract from leaves, roots and stems), three fractions from roots (hexane, ethyl acetate and butanol) and three isolated compounds (niga-ichigoside F1, 23-hydroxytormentic acid, ellagic acid derivative) were tested. The most promising material (LC50 <1000 microg/ml) were the methanolic extract and ethyl acetate fraction from roots. However, there was little correlation observed in the degree of toxicities observed between the isolated compounds. On the other hand, the cytotoxicity and in vivo assays confirmed the hypoglycemic activity of methanolic extract and validated the Brazilian popular use of R. imperialis as an antidiabetic agent.  相似文献   
50.
Wolbachia endosymbiotic bacteria have been implicated in the inflammatory pathogenesis of filariasis. Inflammation induced by Brugia malayi female worm extract (BMFE) is dependent on Toll-like receptors 2 and 6 (TLR2/6) with only a partial requirement for TLR1. Removal of Wolbachia, lipids, or proteins eliminates all inflammatory activity. Wolbachia bacteria contain the lipoprotein biosynthesis genes Ltg and LspA but not Lnt, suggesting Wolbachia proteins cannot be triacylated, accounting for recognition by TLR2/6. Lipoprotein databases revealed 3–11 potential lipoproteins from Wolbachia. Peptidoglycan-associated lipoprotein (PAL) and Type IV secretion system-VirB6 were consistently predicted, and B. malayi Wolbachia PAL (wBmPAL) was selected for functional characterization. Diacylated 20-mer peptides of wBmPAL (Diacyl Wolbachia lipopeptide (Diacyl WoLP)) showed a near identical TLR2/6 and TLR2/1 usage compared with BMFE and bound directly to TLR2. Diacyl WoLP induced systemic tumor necrosis factor-α and neutrophil-mediated keratitis in mice. Diacyl WoLP activated monocytes induce up-regulation of gp38 on human lymphatic endothelial cells and induced dendritic cell maturation and activation. Dendritic cells primed with BMFE generated a non-polarized Th1/Th2 CD4+ T cell profile, whereas priming with Wolbachia depleted extracts (following tetracycline treatment; BMFEtet) polarized to a Th2 profile that could be reversed by reconstitution with Diacyl WoLP. BMFE generated IgG1 and IgG2c antibody responses, whereas BMFEtet or inoculation of TLR2 or MyD88−/− mice produced defective IgG2c responses. Thus, in addition to innate inflammatory activation, Wolbachia lipoproteins drive interferon-γ-dependent CD4+ T cell polarization and antibody switching.Human filariasis is a major neglected tropical disease. More than 150 million individuals are infected with the filarial worms responsible for lymphatic filariasis (LF)4 (Wuchereria bancrofti and Brugia malayi) and onchocerciasis (Onchocerca volvulus). Over 40 million suffer from disfiguring and incapacitating disease with an estimated 1.5 billion people at risk of infection, ranking filariasis as one of the major causes of global morbidity (1).A feature of filarial pathogenesis is a host inflammatory response provoked by the death of larvae and adult stages within parasitized tissues (2). All causative agents of LF and O. volvulus harbor an intracellular symbiotic bacterium, Wolbachia, and are reliant on this endosymbiont for embryogenesis, growth, and survival (3). Previous studies have determined that the inflammatory potential of B. malayi and O. volvulus is dependent on the presence of Wolbachia. For example, Wolbachia-containing filarial extracts induce activation and tolerance in murine macrophages (4, 5), activate human monocytes (6), and activate human and murine neutrophils (7, 8). In addition, O. volvulus and B. malayi extracts containing Wolbachia stimulate neutrophil recruitment to the corneal stroma and development of corneal haze in a murine model of ocular onchocerciasis, in contrast with an aposymbiotic filaria (9). Moreover, isolated Wolbachia from filaria or from insect cells can replicate these effects (8, 10). The activation of neutrophils results in further neutrophil recruitment leading to the disruption of normal corneal clarity and development of stromal haze (11).Activation and subsequent desensitization of macrophages by Wolbachia molecules has been shown to be dependent on TLR2 and the adaptor molecule MyD88 (5, 10). Further studies have established that Wolbachia-induced inflammation is dependent on TLR2 and TLR6 recognition and signaling through the MyD88/Mal pathway and are independent of TRIF and TRAM (12). However, Wolbachia ligands for TLR2/TLR6 have not been characterized. To address this, we used the TLR receptor recognition profile to identify TLR2/6 ligands in the Wolbachia genome. In this study, we demonstrate that Wolbachia-derived diacyl-lipoproteins are candidate stimulatory molecules required for TLR2/6 ligation and production of pro-inflammatory cytokine and chemokine responses. Furthermore, we show that a synthetic Wolbachia lipopeptide (Diacyl WoLP) induces TLR2/6-dependent corneal inflammation, and TLR2-dependent TNFα responses in filarial disease models and up-regulates surface markers of human lymphatic endothelium. Diacyl WoLP also induced activation and maturation of dendritic cells and generated type 1 CD4+ T cell and antibody responses to filarial antigens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号