首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1695篇
  免费   150篇
  国内免费   29篇
  1874篇
  2023年   23篇
  2022年   64篇
  2021年   72篇
  2020年   40篇
  2019年   49篇
  2018年   62篇
  2017年   51篇
  2016年   63篇
  2015年   79篇
  2014年   100篇
  2013年   109篇
  2012年   148篇
  2011年   141篇
  2010年   77篇
  2009年   61篇
  2008年   105篇
  2007年   76篇
  2006年   74篇
  2005年   59篇
  2004年   39篇
  2003年   36篇
  2002年   34篇
  2001年   22篇
  2000年   23篇
  1999年   26篇
  1998年   19篇
  1997年   10篇
  1996年   7篇
  1994年   5篇
  1993年   9篇
  1992年   20篇
  1991年   12篇
  1990年   13篇
  1989年   9篇
  1988年   10篇
  1987年   10篇
  1986年   5篇
  1985年   8篇
  1984年   5篇
  1983年   8篇
  1982年   7篇
  1981年   8篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1974年   4篇
  1973年   12篇
  1971年   10篇
  1966年   5篇
排序方式: 共有1874条查询结果,搜索用时 15 毫秒
91.
Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3’UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.  相似文献   
92.
93.
Doxorubicin (DOX=adriamycine), an effective chemotherapeutic agents for cancers, has severe cardiotoxicity. In the paresent study, we examined the protective effect of thermal preconditioning (TP) against apoptosis of rat cardiac muscle cells induced by DOX. Treatment with DOX (10 microM) for 24 hrs resulted in apoptosis of cardiac muscle cells, which was evaluated by examining "DNA ladder" formation and TUNEL staining. The number of TUNEL-positive cells was significantly decreased in cells subjected to TP by incubation at 42 degrees C for 30 min, 24 hrs prior to DOX-treatment. Antisense oligonucleotides of the heat shock protein (HSP) 70 blunted this effect. These results indicate that DOX-induced apoptosis in cardiac muscle cells is prevented by TP, at least in part, via a HSP70-mediated mechanism.  相似文献   
94.
95.
Entamoeba histolytica is a microaerophilic protozoan parasite in which neither mitochondria nor mitochondrion-derived organelles have been previously observed. Recently, a segment of an E. histolytica gene was identified that encoded a protein similar to the mitochondrial 60-kDa heat shock protein (Hsp60 or chaperonin 60), which refolds nuclear-encoded proteins after passage through organellar membranes. The possible function and localization of the amebic Hsp60 were explored here. Like Hsp60 of mitochondria, amebic Hsp60 RNA and protein were both strongly induced by incubating parasites at 42 degreesC. 5' and 3' rapid amplifications of cDNA ends were used to obtain the entire E. histolytica hsp60 coding region, which predicted a 536-amino-acid Hsp60. The E. histolytica hsp60 gene protected from heat shock Escherichia coli groEL mutants, demonstrating the chaperonin function of the amebic Hsp60. The E. histolytica Hsp60, which lacked characteristic carboxy-terminal Gly-Met repeats, had a 21-amino-acid amino-terminal, organelle-targeting presequence that was cleaved in vivo. This presequence was necessary to target Hsp60 to one (and occasionally two or three) short, cylindrical organelle(s). In contrast, amebic alcohol dehydrogenase 1 and ferredoxin, which are bacteria-like enzymes, were diffusely distributed throughout the cytosol. We suggest that the Hsp60-associated, mitochondrion-derived organelle identified here be named "crypton," as its structure was previously hidden and its function is still cryptic.  相似文献   
96.
97.
To determine the mechanism of 2,4,6-trinitrotoluene (TNT)-induced oxidative stress involving neuronal nitric oxide synthase (nNOS), we examined alterations in enzyme activity and gene expression of nNOS by TNT, with an enzyme preparation and rat cerebellum primary neuronal cells. TNT inhibited nitric oxide formation (IC(50) = 12.4 microM) as evaluated by citrulline formation in a 20,000 g cerebellar supernatant preparation. A kinetic study revealed that TNT was a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. It was found that purified nNOS was capable of reducing TNT, with a specific activity of 3900 nmol of NADPH oxidized/mg/min, but this reaction required CaCl(2)/calmodulin (CaM). An electron spin resonance (ESR) study indicated that superoxide (O(2)(.-)) was generated during reduction of TNT by nNOS. Exposure of rat cerebellum primary neuronal cells to TNT (25 microM) caused an intracellular generation of H(2)O(2), accompanied by a significant increase in nNOS mRNA levels. These results indicate that CaM-dependent one-electron reduction of TNT is catalyzed by nNOS, leading to a reduction in NO formation and generation of H(2)O(2) derived from O(2)(.-). Thus, it is suggested that upregulation of nNOS may represent an acute adaptation to an increase in oxidative stress during exposure to TNT.  相似文献   
98.
Characterization of genetic disorders in humans and animal models requires identification of chromosomal aberrations. However, identifying fine deletions or insertion in metaphase chromosomes has been always a challenge due to limitations of resolution. In this study we developed a rapid method for chromosome elongation using two different intercalating agents: ethidium bromide and 5-bromo-2′-deoxyuridine (BrdU), together with a short-term mitotic block using colcemid. About 70% of the chromosomes from cells that underwent this elongation procedure reached three times longer than those prepared from control cells. FISH experiments using elongated chromosomes revealed a duplicated region of chromosome 11 that was not visible in cells prepared with conventional methods.  相似文献   
99.
Protein arrays permit the parallel analysis of many different markers in a small sample volume. However, the problem of cross-reactivity limits the degree of multiplexing in parallel sandwich immunoassays (using monoclonal antibodies (mAbs)), meaning antibodies must be prescreened in order to reduce false positives. In contrast, we use a second chip surface for the local application of detection antibodies, thereby efficiently eliminating antibody cross-reactions. Here, we illustrate the potential advantages of using single-chain Fv fragments rather than mAbs as capture and detection molecules with this double chip technology.  相似文献   
100.
The benzo[b]acronycine derivative S23906-1 has been recently identified as a promising antitumor agent, showing remarkable in vivo activities against a panel of solid tumors. The anticancer activity is attributed to the capacity of the drug to alkylate DNA, selectively at the exocyclic 2-amino group of guanine residues. Hydrolysis of the C-1 and C-2 acetate groups of S23906-1 provides the diol compound S28907-1 which is inactive whereas the intermediate C-2 monoacetate derivative S28687-1 is both highly reactive toward DNA and cytotoxic. The reactivity of this later compound S28687-1 toward two bionucleophiles, DNA and the tripeptide glutathion, has been investigated by mass spectrometry to identify the nature of the (type II) covalent adducts characterized by the loss of the acetate group at position 2. On the basis of NMR and molecular modeling analyses, the reaction mechanism is explained by a transesterification process where the acetate leaving group is transferred from position C-2 to C-1. Altogether, the study validates the reaction scheme of benzo[b]acronycine derivative with its target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号