首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   12篇
  182篇
  2024年   1篇
  2023年   3篇
  2022年   12篇
  2021年   22篇
  2020年   16篇
  2019年   29篇
  2018年   11篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   17篇
  2012年   17篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
排序方式: 共有182条查询结果,搜索用时 9 毫秒
1.
Adherence of intestinal pathogens, including Escherichia coli O157:H7, to human intestinal epithelial cells is a key step in pathogenesis. Probiotic bacteria, including Lactobacillus helveticus R0052 inhibit the adhesion of E. coli O157:H7 to epithelial cells, a process which may be related to specific components of the bacterial surface. Surface-layer proteins (Slps) are located in a paracrystalline layer outside the bacterial cell wall and are thought to play a role in tissue adherence. However, the ability of S-layer protein extract derived from probiotic bacteria to block adherence of enteric pathogens has not been investigated. Human epithelial (HEp-2 and T84) cells were treated with S-layer protein extract alone, infected with E. coli O157:H7, or pretreated with S-layer protein extract prior to infection to determine their importance in the inhibition of pathogen adherence. The effects of S-layer protein extracts were characterized by phase-contrast and immunofluorescence microscopy and measurement of the transepithelial electrical resistance of polarized monolayers. Pre-treatment of host epithelial cells with S-layer protein extracts prior to E. coli O157:H7 infection decreased pathogen adherence and attaching-effacing lesions in addition to preserving the barrier function of monolayers. These in vitro studies indicate that a non-viable constituent derived from a probiotic strain may prove effective in interrupting the infectious process of an intestinal pathogen.  相似文献   
2.
Breast cancer (BC) is the most frequently occurring malignancy in women worldwide. Despite the substantial advancement in understanding the molecular mechanisms and management of BC, it remains the leading cause of cancer death in women. One of the main reasons for this obstacle is that we have not been able to find the Achilles heel for the BC as a highly heterogeneous disease. Accumulating evidence has revealed that noncoding RNAs (ncRNAs), play key roles in the development of BC; however, the involving of complex regulatory interactions between the different varieties of ncRNAs in the development of this cancer has been poorly understood. In the recent years, the newly discovered mechanism in the RNA world is “competing endogenous RNA (ceRNA)” which proposes regulatory dialogues between different RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). In the latest BC research, various studies have revealed that dysregulation of several ceRNA networks (ceRNETs) between these ncRNAs has fundamental roles in establishing the hallmarks of BC development. And it is thought that such a discovery could open a new window for a better understanding of the hidden aspects of breast tumors. Besides, it probably can provide new biomarkers and potential efficient therapeutic targets for BC. This review will discuss the existing body of knowledge regarding the key functions of ceRNETs and then highlights the emerging roles of some recently discovered ceRNETs in several hallmarks of BC. Moreover, we propose for the first time the “ceRnome” as a new term in the present article for RNA research.  相似文献   
3.
A series of twelve novel diamminetetrakis(carboxylato)platinum(IV) and 18 novel bis(carboxylato)dichlorido(ethane‐1,2‐diamine)platinum(IV) complexes with mixed axial carboxylato ligands was synthesized and characterized by multinuclear 1H‐, 13C‐, 15N‐, and 195Pt‐NMR spectroscopy. Their cytotoxic potential was evaluated (by MTT assay) against three human cancer cell lines derived from ovarian teratocarcinoma (CH1/PA‐1), lung (A549), and colon carcinoma (SW480). In the cisplatin‐sensitive CH1/PA‐1 cancer cell line, diamminetetrakis(carboxylato)platinum(IV) complexes showed IC50 values in the low micromolar range, whereas, for the most lipophilic compounds of the bis(carboxylato)dichlorido(ethane‐1,2‐diamine)platinum(IV) series, IC50 values in the nanomolar range were found.  相似文献   
4.
In recent decades, cancer has been one of the most important concerns of the human community, which affects human life from many different ways, such as breast, lung, colorectal, prostate, and other cancers. Colorectal cancer is one of the most commonly diagnosed cancers in the world that has recently been introduced as the third leading cause of cancer deaths in the world. microRNAs have a very crucial role in tumorgenesis and prevention of cancer, which plays a significant role with influencing various factors through different signaling pathways. Phosphoinositide 3 (PI3)-kinase/AKT is one of the most important signaling pathways involved in the control and growth of tumor in colorectal cancer, through important proteins of this pathway, such as PTEN and AKT, that they can perform specific influence on this process. Our effort in this study is to collect microRNAs that act as tumor suppressors and oncomirs in this cancer through PI3-kinase/AKT signaling pathway.  相似文献   
5.
A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When both external and internal bone remodelling were simulated simultaneously, the initial rectangular design domain with a regularly distributed mass reduced gradually to an optimal state with external shape and internal structure similar to those of the natural proximal femur.  相似文献   
6.
To assess the expression of vascular endothelium growth factor (VEGF) mRNA in unstimulated peripheral blood mononuclear cells of patients with and without coronary artery disease (CAD). We also studied whether the functional VEGF -2,578C/A polymorphism may influence the level of VEGF mRNA expression in individuals undergoing coronary angiography because chest pain. We assessed 50 consecutive patients with angiographically confirmed CAD (CAD+). Also, 50 consecutive individuals with normal coronary studies were included in the study for comparison. VEGF mRNA expression was examined using quantitative real-time PCR and genotyping for VEGF -2,578C/A was performed using ARMS-PCR technique. VEGF mRNA expression was significantly decreased in CAD+ patients when compared to CAD- individuals (p = 0.01). The frequency of VEGF -2578 allele C and genotype CC was increased in CAD+ patients. In this regard, homozygosity for the CC genotype was more commonly observed in CAD+ (30 %) than in those without CAD disease (18 %). However, the difference was slightly out of the range of significance (p = 0.1). In addition, a trend for reduction in the expression of VEGF mRNA was observed when patients carrying the VEGF -2,578AA genotype were compared with those VEGF -2,578AC heterozygous or those homozygous for the VEGF -2,578CC genotype. VEGF gene expression is decreased in individuals with CAD+ disease. The VEGF -2,578C/A polymorphism may influences the expression of VEGF.  相似文献   
7.
To study the effect of an exogenous cytokinin application on safflower yield, an experiment was conducted in 2012–2013. Two cultivars of safflower (Goldasht and Zendehrood) and five concentrations of 6-benzylaminopurine (BAP) (0, 25, 50, 75, and 100 μM) were applied at the flowering stage. Results indicated that the application of 75 μM of BAP showed increased seed and oil yield by 17.54 and 18.29 % over the control, respectively. The increase in seed yield by application of BAP was attributed to the increase in characters like number of heads per plant, number of seeds per head, and 1,000 seed weight. Applying of BAP increased oil content compared with the control. To determine the concentration of cytokinin which has the highest performance for increasing seed yield, regression analysis were estimated showing that in the Zendehrood cultivar, the application of 43 μM of BAP produced the highest seed yield, and in the Goldasht cultivar the application of 73 μM of BAP during flowering produced the highest seed yield.  相似文献   
8.
The current study was conducted to assess the relationship between testicular cells in spermatogenesis, through which the production of healthy and mature sperm is essential. However, it seems necessary to obtain more information about the three-dimensional pattern of the testis cells arrangement, which is directly related to the function of the testis after induction of diabetes. Twelve adult mice (28-30 g) were assigned into two experimental groups: (1) control and (2) diabetic (40 mg/kg STZ). The epididymal sperm collected from the tail of the epididymis and testes samples were taken for stereology, immunocytochemistry and RNA extraction. Our data showed that diabetes could notably decrease the number of testicular cells, together with a reduction of total sperm count. In addition, the results from the second-order stereology indicated the significant changes in the spatial arrangement of Sertoli cells and spermatogonial cells in the diabetic groups, in comparison with the control (P < .05). Moreover, the immunohistochemistry results showed a significant reduction in Sex-determining Region Y (SRY) box 9 gene (SOX9), vimentin, occludin, and connexin-43 positive cells in the diabetic groups compared with the control (P < .05). Furthermore, our data showed that the expression of steroidogenic acute regulatory protein steroidogenic acute regulatory protein (StAR) and peripheral benzodiazepine receptor peripheral benzodiazepine receptor (PBR) was significantly reduced in the diabetic groups, in comparison with the control (P < .05). These findings suggest that structural and functional changes of testis cells after induction of diabetes cause the alterations in the spatial arrangement of Sertoli and spermatogonial cells, ultimately influencing the normal spermatogenesis in mice.  相似文献   
9.
Several evidences support the idea that a small population of tumour cells representing self‐renewal potential are involved in initiation, maintenance, metastasis, and outcomes of cancer therapy. Elucidation of microRNAs/genes regulatory networks activated in cancer stem cells (CSCs) is necessary for the identification of new targets for cancer therapy. The aim of the present study was to predict the miRNAs pattern, which can target both metastasis and self‐renewal pathways using integration of literature and data mining. For this purpose, mammospheres derived from MCF‐7, MDA‐MB231, and MDA‐MB468 were used as breast CSCs model. They had higher migration, invasion, and colony formation potential, with increasing in stemness‐ and EMT‐related genes expression. Our results determined that miR‐204, ‐200c, ‐34a, and ‐10b contemporarily could target both self‐renewal and EMT pathways. This core regulatory of miRNAs could increase the survival rate of breast invasive carcinoma via up‐regulation of OCT4, SOX2, KLF4, c‐MYC, NOTCH1, SNAI1, ZEB1, and CDH2 and down‐regulation of CDH1. The majority of those target genes were involved in the regulation of pluripotency, MAPK, WNT, Hedgehog, p53, and transforming growth factor β pathways. Hence, this study provides novel insights for targeting core regulatory of miRNAs in breast CSCs to target both self‐renewal and metastasis potential and eradication of breast cancer.  相似文献   
10.
Hyperglycemia affects retinal vascular cell function, promotes the development and progression of diabetic retinopathy and ultimately causes vision loss. Oxidative stress, reactive oxygen species (ROS) in excess, is a key biomarker for diabetic retinopathy. Using time‐lapse fluorescence microscopy, ROS dynamics was monitored and the metabolic resistivity of retinal endothelial cells (REC) and pericytes (RPC) was compared under metabolic stress conditions including high glucose (HG). In the presence of a mitochondrial stressor, REC exhibited a significant increase in the rate of ROS production compared with RPC. Thus, under normal glucose (NG), REC may utilize oxidative metabolism as the bioenergetic source, while RPC metabolic activity is independent of mitochondrial respiration. In HG condition, the rate of ROS production in RPC was significantly higher, whereas this rate remained unchanged in REC. Thus, under HG condition RPC may preferentially utilize oxidative metabolism, which results in increased rate of ROS production. In contrast, REC use glycolysis as their major bioenergetic source for ATP production, and consequently HG minimally affects their ROS levels. These observations are consistent with our previous studies where we showed HG condition has minimal effect on apoptosis of REC, but results in increased rate of apoptosis in RPC. Collectively, our results suggest that REC and RPC exhibit different metabolic activity preferences under different glucose conditions. Thus, protection of RPC from oxidative stress may provide an early point of intervention in development and progression of diabetic retinopathy.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号