首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   9篇
  139篇
  2022年   3篇
  2021年   3篇
  2020年   8篇
  2019年   20篇
  2018年   6篇
  2017年   1篇
  2016年   9篇
  2015年   7篇
  2014年   3篇
  2013年   8篇
  2012年   9篇
  2011年   8篇
  2010年   8篇
  2009年   10篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有139条查询结果,搜索用时 0 毫秒
71.
The predominant proteins (58K) of the intermediate filament complex in the goldfish visual pathway consist of a series of isoelectric variants. Previous biochemical studies have shown that proteins ON1 and ON2 are of neuronal origin, whereas ON3 and ON4 are of nonneuronal origin. Polyclonal antibodies, purified by affinity chromatography, that are specific for ON1 and ON2 or ON3 and ON4 have been used to localize histologically the ON proteins within the normal and crushed optic nerve. Anti-ON1/ON2 antiserum presented a pattern consistent with intraaxonal staining. A nonneuronal staining pattern was observed with anti-ON3/ON4 antiserum. The two patterns were distinct from and complementary to each other. The data suggest that ON3 and ON4 represent a novel glial fibrillary acidic protein. The results are discussed in terms of the function of these proteins in development, plasticity, and regeneration.  相似文献   
72.
73.
Mussels of the subfamily Bathymodiolinae thrive around chimneys emitting hot fluids at deep sea hydrothermal vents, as well as at cold seeps and on sunken organic debris (sunken wood, whale falls). Despite the absence of light-driven primary production in these deep-sea ecosystems, mussels succeed reaching high biomasses in these harsh conditions thanks to chemosynthetic, carbon-fixing bacterial symbionts located in their gill tissue. Since the discovery of mussel symbioses about three decades ago our knowledge has increased, yet new findings are published regularly regarding their diversity, role and evolution. This article attempts to summarize current knowledge about symbiosis in Bathymodiolinae, focusing on mussel species for which information is available regarding both hosts and symbionts. Moreover, new data obtained from small mussels inhabiting sunken woods around the Philippines are provided. Indeed, mussel species from organic falls remain poorly studied compared to their vent and seep relatives despite their importance for the understanding of the evolution of symbiosis in the subfamily Bathymodiolinae. To cite this article: S. Duperron et al., C. R. Biologies 332 (2009).  相似文献   
74.
Quercetin, the plant-derived phenolic compounds, plays a pivotal role in controlling hemostasis, by having potent antioxidant and free-radical scavenging properties. This flavonoid in combination with chemotherapeutic drugs improves the efficacy of these agents in induction of apoptosis in cancer cells. This study investigated the role of nano-quercetin (phytosome) in doxorubicin-induced apoptosis. Nanoparticles were characterized for particle size, zeta potential, scanning electron microscopy (SEM) and differential scanning calorimetric assessments. Anti-proliferative effect of formulations was evaluated by MTT assay. mRNA expression levels of target genes were measured by real time RT-PCR. The mean size of nanoparticles was 85 ± 2 nm with nearly narrow size distribution which was confirmed by SEM analysis. Our results showed that co-treatment of MCF-7 breast cancer cells with nano-quercetin and doxorubicin increased the percentage of apoptosis from 40.11 ± 7.72–58 ± 7.13 (p < 0.05). Furthermore, mRNA expression levels for downstream genes including NQO1 and MRP1 showed a marked decrease (p < 0.05). Taken together, our results suggest that phytosome technology can elevate the efficacy of chemotherapeutics by increasing the permeability of tumor cells to chemical agents. Our findings introduce a novel phytosome-dependent strategy to improve delivery of doxorubicin to the breast cancerous tissues.  相似文献   
75.
The synthesis and pharmacological evaluation of racemic 14-aryl-10,11,12,14-tetrahydro-9H-benzo[5,6]chromeno[2,3-b]quinolin-13-amines (19-28), prepared by Friedländer reaction of 3-amino-1-aryl-1H-benzo[f]chromene-2-carbonitriles (10-18) with suitable cycloalkanones is described. These molecules are potent, in the nanomolar range [IC50 (EeAChE) = 7-101 nM], and selective inhibitors of acetylcholinesterase (AChE). The most potent inhibitor, 4-(13-amino-10,11,12,14-tetrahydro-9H-benzo[5,6]chromeno[2,3-b]quinolin-14-yl)phenol (20) [IC50 (EeAChE) = 7 ± 2 nM] is four-fold more active than tacrine. Kinetic studies on compound 20 showed that this is a mixed-type inhibitor of EeAChE with a Ki of 5.00 nM. However, racemic 20 was unable to displace propidium iodide, suggesting that the inhibitor does not strongly bind to the peripheral anionic site (PAS) of AChE. Docking, molecular dynamics stimulations, and MM-GBSA calculations agree well with this behavior.  相似文献   
76.
N-(Phenethyl)piperazinyl quinolone derivatives that bear a methoxyimino-substituent have been synthesized and evaluated for antimicrobial activity against Gram-positive and Gram-negative microorganisms. In addition, to define structure-activity relationships, ciprofloxacin derivatives containing 2-oxo-2-phenylethyl or 2-hydroxyimino-2-phenylethyl moieties at N-4 position of piperazine ring were prepared and tested. Ciprofloxacin derivatives, containing a N-(chloro-substituted phenethyl) residue, showed in vitro Gram-positive and Gram-negative activity generally comparable or superior to that of reference quinolones.  相似文献   
77.
In this study, Farnesiferol C was introduced as an anti-colon cancer agent. Its cytotoxicity was investigated on two cancer cell lines, HCT116 and CT26, and mesenchymal stem cells (MSCs) as normal cells employing MTT assay. Moreover, Farnesiferol C interactions with ct-DNA and HSA were investigated by various techniques. The IC50 values of Farnesiferol C on HCT116 and CT26 cells were 42 and 46?μM, respectively, while its IC50 value on MSCs cells was 92?μM, indicating that Farnesiferol C was more efficacious against cancer cell lines than normal cells. DNA competitive binding studies, viscosity and zeta potential measurements confirmed that Farnesiferol C bound to DNA through intercalation binding. HSA binding investigations revealed that there were two different binding sites for Far C on HSA with higher binding affinity in site 2 compared to site 1. Furthermore, Farnesiferol C could bind to HSA and quench its intrinsic fluorescence in a static quenching mechanism, with a distance of 2.54?nm. Competitive binding in the presence of warfarin and ibuprofen was carried out and the resulting quenching constant was strongly changed in the presence of warfarin. Consequently, Farnesiferol C most probably will be located within sub-domain IIA. In this study, molecular modeling buttressed and confirmed our laboratory results. Conclusively, we proposed that DNA is an appropriate target for Farnesiferol C. Therefore, Farnesiferol C and its semisynthetic analogues can be one of the priority innovations in research on anticancer drugs.  相似文献   
78.
Cancer stem cells (CSCs) are tumor cells with initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics. Efficient isolation and characterization of CSCs pave the way for more comprehensive knowledge about tumorigenesis, heterogeneity, and chemoresistance. Also a better understanding of CSCs will lead to novel era of both basic and clinical cancer research, reclassification of human tumors, and development of innovative therapeutic strategies. Finding novel diagnostic and effective therapeutic strategies also enhance the success of treatment in cancer patients. There are various methods based on the characteristics of the CSCs to detect and isolate these cells, some of which have recently developed. This review summarized current techniques for effective isolation and characterization of CSCs with a focus on advantages and limitations of each method with clinical applications.  相似文献   
79.
The Saharo–Sindian regional zone encompasses the flat and arid areas of North Africa, the Arabian Peninsula, southern Iran and the deserts of Pakistan and west India. There are some scattered mountains situated within this area, like Hoggar in Sahara, Saint Catherine in Sinai and Genu and Homag in southern Iran. These highlands serve as interglacial refugia for cold adapted plant species. In the present study, phytogeographical patterns and relationships of the flora of Genu and Homag mountains are described and discussed in relation to the phytogeography of the flora of low‐lying Hormoz Island. According to a chorological assesment of the flora, Genu and Homag mountains belong to the Irano–Turanian region with 59% of the species restricted to this area. In contrast, the surrounding lowland plains are part of the Saharo–Sindian area with a rather high proportion of widespread species (17%) and Somalia–Masai‐linking elements (20%). It is noteworthy that several Turanian enclaves also occur in the lowland zone. Furthermore, the distributional patterns imply that the mountainous Irano–Turkestanian region is an integrated area which is supposedly distinct from the Turanian lowland areas in the north and from the Saharo–Sindian lowland areas in the south. On the other hand, the expansive floras of Turanian and Saharo–Sindian regions are linked to each other. Endemic species in lowland areas in south Iran are mostly either frost sensitive vicariants of cold adapted Turanian species or of Saharo–Sindian origin, while the highland endemics in the area trace their origins to the Irano–Turkestanian region.  相似文献   
80.
Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate) / sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号