首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
21.
Loss of function of the Wfs1 gene causes Wolfram syndrome, a rare multisystem degenerative disorder. Mutant mice with targeted Wfs1 gene disruption (Wfs1 KO) display morphological and behavioral impairments that are not well understood. The present study aimed to investigate the striatal dopamine output of wild-type, heterozygous, and homozygous Wfs1 null-mutant mice using in vivo microdialysis technique. The baseline dopamine output in striatum was similar in all three animal groups. The application of 100 mM [K+]-rich modified Ringer solution caused in homozygous Wfs1 mutant mice an increase of dopamine output by 400%, while in wild-type and heterozygous animals, the increase of the dopamine output yielded up to 1,200%. In sum, the homozygous Wfs1 mutant mice (AUC0–3 = 0.212 nM/μl h) show significantly decreased striatal dopamine output in response to high-concentration [K+] challenge as compared with wild-type or heterozygous Wfs1 mutant conspecifics (AUC0–3 = 0.427 and 0.505 nM/μl h, respectively). This could explain at least some of the behavioral alterations in Wfs1 mutant mice.  相似文献   
22.
Valproic acid (VLP) is a widely used anticonvulsant and mood-stabilizing drug that relieves the endoplasmic reticulum (ER) stress response, a pathogenetic process related to diabetes. The aim of the present study was to evaluate whether acute valproic acid is able to interfere with glucose intolerance in two different diabetes models: The first model was a Wfs1 mutant mouse with an elevated ER stress response and the second model a streptozocin-induced diabetic mouse. VLP (300 mg/kg, i.p.) was administered to Wfs1 knockout (KO) mice and glucose tolerance test was performed 15 min later. VLP did not have an effect on the course of the glucose tolerance test in wild-type mice, while it did normalize the glucose intolerance in Wfs1 knockout mice. Acute valproic acid also lowered the blood glucose levels in streptozocin-treated mice and potentiated the effect of insulin in these mice. Thus, acute valproic acid is effective in lowering blood glucose levels possibly by potentiating insulin action in both Wfs1 KO mice and in streptozocin-induced type 1 diabetic mice.  相似文献   
23.
Sirtuin belongs to a family of typical histone deacetylase which regulates the fundamental cellular biological processes including gene expression, genome stability, mitosis, nutrient metabolism, aging, mitochondrial function, and cell motility. Michael et. al. reported that B-site mutation (Q167A and H187A) decreased the SIRT2 activity but still the structural changes were not reported. Hence, we performed 5 ns molecular dynamics (MD) simulation on SIRT2 Apo-form and complexes with substrate/NAD+ and inhibitor of wild type (WT), Q167A, and H187A. The results revealed that the assembly and disassembly of C-site induced by presence of substrate/NAD+ and inhibitor, respectively. This assembly and disassembly was mainly due to the interaction between the substrate/NAD+ and inhibitor and F96 and the distance between F96 and H187 which are present at the neck of the C-site. MD simulations suggest that the conformational change of L3 plays a major role in assembly and disassembly of C-site. Our current results strongly suggest that the distinct conformational change of L3 as well as the assembly and disassembly of C-site plays an important role in SIRT2 deacetylation function. Our study unveiled the structural changes of SIRT2 in presence of NAD+ and inhibitor which should be helpful to improve the inhibitory potency of SIRT2.  相似文献   
24.
Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymase complexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most activecompound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitory mechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes.  相似文献   
25.
Cholesterol oxidase (ChOx) is a flavoenzyme that oxidizes and isomerizes cholesterol (CHL) to form cholest‐4‐en‐3‐one. Molecular docking and molecular dynamics simulations were conducted to predict the binding interactions of CHL in the active site. Several key interactions (E361‐CHL, N485‐FAD, and H447‐CHL) were identified and which are likely to determine the correct positioning of CHL relative to flavin‐adenine dinucleotide (FAD). Binding of CHL also induced changes in key residues of the active site leading to the closure of the oxygen channel. A group of residues, Y107, F444, and Y446, known as the hydrophobic triad, are believed to affect the binding of CHL in the active site. Computational site‐directed mutagenesis of these residues revealed that their mutation affects the conformations of key residues in the active site, leading to non‐optimal binding of CHL and to changes in the structure of the oxygen channel, all of which are likely to reduce the catalytic efficiency of ChOx. Proteins 2017; 85:1645–1655. © 2017 Wiley Periodicals, Inc.  相似文献   
26.
Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. Human thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR) are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA and protein. Their inhibition has found clinical utility as antitumour, antimicrobial and antiprotozoal agents. The aim of this study is to elucidate the factors which are responsible for the potent inhibition of hTS and hDHFR, respectively, through the detailed analysis of the binding modes of dual TS–DHFR inhibitors at both active sites using molecular docking study. Moreover, this study is also accompanied by the exploration of electronic features of dual inhibitors via the density functional theory approach. This study demonstrates that appropriate substitution at the sixth position of thieno[2,3-d]pyrimidines moiety in non-classical dual inhibitors of hTS and hDHFR plays a key role in the inhibition of hTS and hDHFR enzymes. In general, the outcomes of this research exertion will significantly be helpful in drug design for cancer chemotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号