首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   28篇
  国内免费   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   9篇
  2015年   7篇
  2014年   7篇
  2013年   15篇
  2012年   17篇
  2011年   17篇
  2010年   15篇
  2009年   11篇
  2008年   21篇
  2007年   16篇
  2006年   17篇
  2005年   13篇
  2004年   12篇
  2003年   11篇
  2002年   6篇
  2001年   4篇
  2000年   6篇
  1999年   8篇
  1998年   7篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1990年   6篇
  1989年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1977年   8篇
  1976年   2篇
  1975年   4篇
  1974年   5篇
  1973年   2篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   5篇
  1965年   1篇
  1964年   2篇
  1959年   1篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
81.

Background  

SH3 domains are small protein modules of 60–85 amino acids that bind to short proline-rich sequences with moderate-to-low affinity and specificity. Interactions with SH3 domains play a crucial role in regulation of many cellular processes (some are related to cancer and AIDS) and have thus been interesting targets in drug design. The decapeptide APSYSPPPPP (p41) binds with relatively high affinity to the SH3 domain of the Abl tyrosine kinase (Abl-SH3), while it has a 100 times lower affinity for the α-spectrin SH3 domain (Spc-SH3).  相似文献   
82.
Two isomers of the N,O-coordinated acetylpyrrolyl complex [Ru(PPh3)2(CO)(NC4H3C(O)CH3)H] {cis-N,H (1) and trans-N,H (2)} have been prepared as models for catalytic intermediates in the Murai reaction. Complex 2 isomerises to 1 upon heating via a dissociative pathway (ΔH = 195 ± 41 kJ mol−1; ΔS = 232 ± 62 J mol−1 K−1); the mechanism of this process has been modeled using density functional calculations. Complex 2 displays moderate catalytic activity for the Murai coupling of 2′-methylacetophenone with trimethylvinylsilane, but 1 proved to be catalytically inactive under the same conditions.  相似文献   
83.
The mammalian alpha/beta T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR-MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential.  相似文献   
84.

Introduction

We have previously demonstrated that ex vivo inhibition of costimulatory molecules on antigen-pulsed dendritic cells (DCs) can be useful for induction of antigen-specific immune deviation and suppression of autoimmune arthritis in the collagen induced arthritis (CIA) model. The current study evaluated a practical method of immune modulation through temporary systemic inhibition of the costimulatory molecule CD40.

Methods

Mice with collagen II (CII)-induced arthritis (CIA) were administered siRNA targeting the CD40 molecule. Therapeutic effects were evaluated by clinical symptoms, histopathology, Ag-specific T cell and B cell immune responses.

Results

Systemic administration of CD40-targeting siRNA can inhibit antigen-specific T cell response to collagen II, as well as prevent pathogenesis of disease in both a pre- and post-immunization manner in the CIA model. Disease amelioration was associated with suppression of Th1 cytokines, attenuation of antibody production, and upregulation of T regulatory cells.

Conclusions

These studies support the feasibility of transient gene silencing at a systemic level as a mechanism of resetting autoreactive immunity.  相似文献   
85.
BRCA1 C-terminal domain (BRCT)-containing proteins are found widely throughout the animal and bacteria kingdoms where they are exclusively involved in cell cycle regulation and DNA metabolism. Whereas most BRCT domains are involved in protein-protein interactions, a small subset has bona fide DNA binding activity. Here, we present the solution structure of the BRCT region of the large subunit of replication factor C bound to DNA and a model of the structure-specific complex with 5′-phosphorylated double-stranded DNA. The replication factor C BRCT domain possesses a large basic patch on one face, which includes residues that are structurally conserved and ligate the phosphate in phosphopeptide binding BRCT domains. An extra α-helix at the N terminus, which is required for DNA binding, inserts into the major groove and makes extensive contacts to the DNA backbone. The model of the protein-DNA complex suggests 5′-phosphate recognition by the BRCT domains of bacterial NAD+-dependent ligases and a nonclamp loading role for the replication factor C complex in DNA transactions.  相似文献   
86.
In most cases, Escherichia coli exists as a harmless commensal organism, but it may on occasion cause intestinal and/or extraintestinal disease. Enterotoxigenic E. coli (ETEC) is the predominant cause of E. coli-mediated diarrhea in the developing world and is responsible for a significant portion of pediatric deaths. In this study, we determined the complete genomic sequence of E. coli H10407, a prototypical strain of enterotoxigenic E. coli, which reproducibly elicits diarrhea in human volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains, revealing that the chromosome is closely related to that of the nonpathogenic commensal strain E. coli HS and to those of the laboratory strains E. coli K-12 and C. Furthermore, these analyses demonstrated that there were no chromosomally encoded factors unique to any sequenced ETEC strains. Comparison of the E. coli H10407 plasmids with those from several ETEC strains revealed that the plasmids had a mosaic structure but that several loci were conserved among ETEC strains. This study provides a genetic context for the vast amount of experimental and epidemiological data that have been published.Current dogma suggests the Gram-negative motile bacterium Escherichia coli colonizes the infant gut within hours of birth and establishes itself as the predominant facultative anaerobe of the colon for the remainder of life (3, 59). While the majority of E. coli strains maintain this harmless existence, some strains have adopted a pathogenic lifestyle. Contemporary tenets suggest that pathogenic strains of E. coli have acquired genetic elements that encode virulence factors and enable the organism to cause disease (12). The large repertoire of virulence factors enables E. coli to cause a variety of clinical manifestations, including intestinal infections mediating diarrhea and extraintestinal infections, such as urinary tract infections, septicemia, and meningitis. Based on clinical manifestation of disease, the repertoire of virulence factors, epidemiology, and phylogenetic profiles, the strains causing intestinal infections can be divided into six separate pathotypes, viz., enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), diffuse adhering E. coli (DAEC), and enterotoxigenic E. coli (ETEC) (33, 35, 39).ETEC is responsible for the majority of E. coli-mediated cases of human diarrhea worldwide. It is particularly prevalent among children in developing countries, where sanitation and clean supplies of drinking water are inadequate, and in travelers to such regions. It is estimated that there are 200 million incidences of ETEC infection annually, resulting in hundreds of thousands of deaths in children under the age of 5 (55, 64). The essential determinants of ETEC virulence are traditionally considered to be colonization of the host small-intestinal epithelium via plasmid-encoded colonization factors (CFs) and subsequent release of plasmid-encoded heat-stable (ST) and/or heat-labile (LT) enterotoxins that induce a net secretory state leading to profuse watery diarrhea (20, 62). More recently, additional plasmid-encoded factors have been implicated in the pathogenesis of ETEC, namely, the EatA serine protease autotransporter (SPATE) and the EtpA protein, which acts as an intermediate in the adhesion between bacterial flagella and host cells (23, 32, 42, 46). Furthermore, a number of chromosomal factors are thought to be involved in virulence, e.g., the invasin Tia; the TibA adhesin/invasin; and LeoA, a GTPase with unknown function (14, 21, 22). E. coli H10407 is considered a prototypical ETEC strain; it expresses colonization factor antigen 1 (CFA/I) and the heat-stable and heat labile toxins. Loss of a 94.8-kb plasmid encoding CFA/I and a gene for ST enterotoxin from E. coli strain H10407 leads to reduced ability to cause diarrhea (17).Here, we report the complete genome sequence and virulence factor repertoire of the prototypical ETEC strain H10407 and the nucleotide sequence and gene repertoire of the plasmids from ETEC strain E1392/75, and we describe a novel conserved secretion system associated with the sequenced ETEC strains.  相似文献   
87.

Background  

The National Institute of Allergy and Infectious Diseases has launched the HIV-1 Human Protein Interaction Database in an effort to catalogue all published interactions between HIV-1 and human proteins. In order to systematically investigate these interactions functionally and dynamically, we have constructed an HIV-1 human protein interaction network. This network was analyzed for important proteins and processes that are specific for the HIV life-cycle. In order to expose viral strategies, network motif analysis was carried out showing reoccurring patterns in virus-host dynamics.  相似文献   
88.

Background

Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac.

Methodology/Principal Findings

Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins.

Conclusion/Significance

This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the field.  相似文献   
89.
Rx-Cre, a tool for inactivation of gene expression in the developing retina   总被引:1,自引:0,他引:1  
Rx is a homeobox-containing gene that is critical for vertebrate eye development. Its expression domain delineates a field of cells from which the retina and the ventral hypothalamus develop. The 5' upstream regulatory sequences of the medaka fish Rx gene are functionally conserved during evolution to a degree that they direct gene expression into the Rx-expressing field of cells in mice. Using these sequences, we made a Cre line that can be used for inactivation of gene expression in the developing retina.  相似文献   
90.
Sentinel cattle and a grid of swormlure-baited sticky traps were used to monitor a Malaysian population of the Old World screw-worm fly, Chrysomya bezziana Villeneuve. Observations were carried out on an isolated cattle station at monthly intervals during the period August 1996 to June 2000. The number of flies caught was unaffected by weather conditions at the time of trapping, but was positively correlated with the total rainfall and the average daily air temperature prevailing 15-28 days earlier, when trapped flies were still juveniles. Trap catches were biased in favour of females, but daily catch rates of both sexes increased significantly the longer traps were open, suggesting that efficacy was related to the differential volatility of the chemicals comprising swormlure. Oviposition on sentinel cattle occurred mostly in late afternoon or early evening but increased significantly as the wound aged. Oviposition rates were positively correlated with female catch rates, but the relationship was curvilinear, suggesting that fly populations may be subject to some form of density-dependent constraint. Consistent differences in oviposition rates on sentinel cattle at different localities on the cattle station suggested the existence of highly clumped, quasi-stationary populations. Differences in trap catches between traps located in pastoral areas and those sited in nearby oil palm or rubber plantations supported this interpretation of the data. These findings are discussed in relation to the use of the sterile insect technique for the control of screw-worm fly infestations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号