首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   9篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   12篇
  2018年   7篇
  2017年   2篇
  2015年   6篇
  2014年   7篇
  2013年   16篇
  2012年   11篇
  2011年   10篇
  2010年   8篇
  2009年   9篇
  2008年   8篇
  2007年   4篇
  2006年   4篇
  2005年   7篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  1994年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有156条查询结果,搜索用时 234 毫秒
21.
Optimization of an in vitro culture that supports blastocyst (BL) development from single blastomeres (SBs) is essential to generate additional embryos for farm animals and humans and unravel the mechanisms that underlie totipotency. In this study, we have examined BL development from SBs that were derived from 2‐cell and 4‐cell mouse embryos in different media. Moreover, BLs were assessed for inner cell mass (ICM) by staining with Oct4. We found that BL development was improved in a lower volume of medium (1 µL) compared with a higher volume (5 µL). Furthermore, the supplementation of medium with the inhibitors of ERK1/2 and TGFβ (R2i) signaling pathways in 1 µL droplets of T6 medium improved BL development. The co‐culture of SBs with intact embryos in the presence of R2i showed more BL development and ICM to trophectoderm cell number ratio in comparison with SB culture and SB group culture. We also observed reduced total cell number, ICM, and trophectoderm cell numbers in all of the SB culture conditions versus intact embryo development. These findings might facilitate the successful generation of additional embryos for biomedical applications and elucidate the mechanisms that underlie totipotency.  相似文献   
22.
23.
Chromosomal inversion polymorphism affects nucleotide variation at loci associated with inversions. In Drosophila subobscura, a species with a rich chromosomal inversion polymorphism and the largest recombinational map so far reported in the Drosophila genus, extensive genetic structure of nucleotide variation was detected in the segment affected by the O(3) inversion, a moderately sized inversion at Muller's element E. Indeed, a strong genetic differentiation all over O(3) and no evidence of a higher genetic exchange in the center of the inversion than at breakpoints were detected. In order to ascertain, whether other polymorphic and differently sized inversions of D. subobscura also exhibited a strong genetic structure, nucleotide variation in 5 gene regions (P236, P275, P150, Sxl, and P125) located along the A(2) inversion was analyzed in A(st) and A(2) chromosomes of D. subobscura. A(2) is a medium-sized inversion at Muller's element A and forms a single inversion loop in heterokaryotypes. The lower level of variation in A(2) relative to A(st) and the significant excess of low-frequency variants at polymorphic sites indicate that nucleotide variation at A(2) is not at mutation-drift equilibrium. The closest region to an inversion breakpoint, P236, exhibits the highest level of genetic differentiation (F(ST)) and of linkage disequilibrium (LD) between arrangements and variants at nucleotide polymorphic sites. The remaining 4 regions show a higher level of genetic exchange between A(2) and A(st) chromosomes than P236, as revealed by F(ST) and LD estimates. However, significant genetic differentiation between the A(st) and A(2) arrangements was detected not only at P236 but also in the other 4 regions separated from the nearest breakpoint by 1.2-2.9 Mb. Therefore, the extent of genetic exchange between arrangements has not been high enough to homogenize nucleotide variation in the center of the A(2) inversion. A(2) can be considered a typical successful inversion of D. subobscura according to its relative length. Chromosomal inversion polymorphism of D. subobscura might thus cause the genome of this species to be highly structured and to harbor different gene pools that might contribute to maintain adaptations to particular environments.  相似文献   
24.
Oocyte maturation is a prerequisite for successful fertilization. Growing evidence suggests that not only the oocyte but also the surrounding zona pellucida has to undergo maturational changes. In the pig, two-dimensional electrophoretic analysis demonstrated an acidic shift of the zona pellucida glycoproteins of about 1.5–2.0 pH units during the maturation process. These findings were corroborated by histological studies that indicated the synthesis of acidic glycoconjugates in the cumulus cells and an increased occurrence of acidic glycans in the zona pellucida after oocyte maturation. In order to provide structural data on prepuberal zona pellucida N-glycosylation, N-glycans were released from prepuberal zona pellucida glycoproteins by N-glycosidase F and studied by mass spectrometry before and after desialylation and treatment with endo-β-galactosidase. Our results verified the presence of high-mannose-type Man5GlcNAc2 compounds as well as diantennary N-glycans as major neutral species, whereas sialylated diantennary and triantennary species constituted the dominant non-sulfated acidic sugar chains. The major acidic N-glycans of prepuberal animals, however, represented mono-sulfated diantennary, triantennary and tetraantennary oligosaccharides carrying, in part, N-acetyllactosamine repeating units as well as additional Neu5Ac or Neu5Gc residues. Glycans comprising more than one sulfate residue were not detected. In contrast to the literature data on zona pellucida glycoprotein-N-glycans of cyclic animals, our data thus reveal a lower degree in glycan sulfation of the prepuberal zona pellucida.  相似文献   
25.
Degradation of damaged mitochondria by mitophagy is an essential process to ensure cell homeostasis. Because neurons, which have a high energy demand, are particularly dependent on the mitochondrial dynamics, mitophagy represents a key mechanism to ensure correct neuronal function. Collapsin response mediator proteins 5 (CRMP5) belongs to a family of cytosolic proteins involved in axon guidance and neurite outgrowth signaling during neural development. CRMP5, which is highly expressed during brain development, plays an important role in the regulation of neuronal polarity by inhibiting dendrite outgrowth at early developmental stages. Here, we demonstrated that CRMP5 was present in vivo in brain mitochondria and is targeted to the inner mitochondrial membrane. The mitochondrial localization of CRMP5 induced mitophagy. CRMP5 overexpression triggered a drastic change in mitochondrial morphology, increased the number of lysosomes and double membrane vesicles termed autophagosomes, and enhanced the occurrence of microtubule-associated protein 1 light chain 3 (LC3) at the mitochondrial level. Moreover, the lipidated form of LC3, LC3-II, which triggers autophagy by insertion into autophagosomes, enhanced mitophagy initiation. Lysosomal marker translocates at the mitochondrial level, suggesting autophagosome-lysosome fusion, and induced the reduction of mitochondrial content via lysosomal degradation. We show that during early developmental stages the strong expression of endogenous CRMP5, which inhibits dendrite growth, correlated with a decrease of mitochondrial content. In contrast, the knockdown or a decrease of CRMP5 expression at later stages enhanced mitochondrion numbers in cultured neurons, suggesting that CRMP5 modulated these numbers. Our study elucidates a novel regulatory mechanism that utilizes CRMP5-induced mitophagy to orchestrate proper dendrite outgrowth and neuronal function.  相似文献   
26.
27.
28.
29.
30.
Biogeochemistry - The biogeochemical model, PnET-BGC, was modified and parameterized using field data from an experimental whole-tree harvest of watershed (W5) in 1983–1984 at the Hubbard...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号