The current study aimed to test the effect of Moringa oleifera extract (MOE), vitamin (Vit) C, and sodium bicarbonate (NaHCO3) on heat stress (HS)-induced alterations in rabbits. Five groups of rabbits were designed as control, HS, HS?+?MOE, HS?+?Vit C, and HS?+?NaHCO3. HS groups were exposed to high temperatures, while treatments were given in drinking water for 6 weeks. Levels of blood cortisol, leptin, IFN-γ, TNF-α, and IL-10 were assayed using ELISA, while adrenaline was assayed calorimetrically. Expression of HSP70, FOXP3, T cell receptor (TCR) γ, and δ mRNA was tested using real-time (RT)-PCR, while HSP70 protein expression was tested using western blotting in liver and kidney tissues. Infiltration of regulatory T cells (Treg; CD25+) and NK (CD56+) cells were tested using immunohistochemistry (IHC). The levels of liver enzymes (ALT & AST), urea, and creatinine were assayed calorimetrically, while body weight gain (BWG) and feed conversion ratio (FCR) were calculated. The results showed increased levels of cortisol, adrenaline, leptin, IFN-γ, TNF-α, ALT, AST, urea, and creatinine but decreased IL-10 in the HS group. Increased expression of HSP70 on both mRNA and protein levels was associated with increased NK and γδ T cells versus decreased Treg cell infiltration in liver and kidney tissues of the HS group. In the same group, BWG was decreased, while FCR was increased with respect to the control group. All treatments used in this study reversed the effects of HS significantly. In conclusion, MOE, Vit C, and NaHCO3 can be added to rabbit diets for the amelioration of HS-induced symptoms. 相似文献
Atherosclerosis is the most common cause of mortality in the Western world, contributing to about 50% of all deaths. Atherosclerosis is characterized by deposition of lipids onto the coronary or carotid arterial wall and formation of an atherosclerotic plaque. Atherosclerotic plaques are categorized into two groups: symptomatic and asymptomatic. The symptomatic plaques tend to be unstable and prone to rupture, and are associated with an increase in ischemic events. Oxysterols, products of cholesterol oxidation, are cytotoxic materials. Their level and type may be associated with plaque formation, development and stability. Oxysterols stimulate the formation of foam cells, advance atherosclerotic plaque progression, and contribute to plaque vulnerability and instability due to their cytotoxicity and their ability to induce cell apoptosis. Studies indicate that plasma 7β-OH CH level can be used as a biomarker for detecting carotid and coronary artery disease. Further clinical studies are needed to evaluate the potential of oxysterols for use as biomarkers for plaque vulnerability and instability. The identification of biomarkers in the blood that can distinguish between symptomatic and asymptomatic plaques remains an unresolved issue. 相似文献
The β(1,4)-galactosyltransferase-I gene (β4galt1) encodes the catalytic part of the enzyme lactose synthase, responsible of lactose synthesis in the mammary gland. The complete
coding region of the gene was screened for the presence of allelic variation among a sample of 1,200 Iranian Holstein cows,
using PCR-SSCP technique followed by sequencing. Nine polymorphic nucleotide sites were identified-one in exons I and VI,
two in exons II and III, and three in exon V. Altogether 18 different genotypes were assigned. Statistical analysis showed
that the genotypes of Β4GALT1 significantly affect milk, lactose, protein and total solid productions in both the first and
second lactation (P < 0.001). Variance component analysis considering restricted maximum likelihood showed that the major factor making differences
in milk, lactose, protein and total solid productions among the studied cow is the β4galt1 genotype. We concluded that the β4galt1 gene is potentially associated with milk production traits in dairy cows and should be considered for further studies on
genetics of the milk production traits. 相似文献
Effect of biscuit processing on the destruction of aflatoxins B1 and G1 with and/or without some commonly leavening agents used namely sodium bicarbonate, ammonium bicarbonate and sodium bisulfite and sodium chloride. It was found that mixing step reduced the concentration of aflatoxins B1 and G1 by 80.7% and 82.7%, while the effect of baking step being 28.9% and 21.5%. The effect of mixing was found to be more pronounced than that baking step. The highest destruction effect on aflatoxin B1 was observed by adding a mixture composed of sodium and ammonium bicarbonate and sodium bisulfite followed by sodium chloride, sodium bisulfite, ammonium bicarbonate and/or sodium bicarbonate alone, where the reduction values of toxin after mixing were 93.4,91.9,91.7, 88.8 and 86.6% respectively, while the baking effect ranged 17.2 to 34.5% in the presence of different leaving agents added. Concerning aflatoxin G1; the highest destructive effect of toxin was adsorbed by adding a mixture of sodium and ammonium bicarbonate and sodium bisulfite followed by sodium bisulfite, sodium chloride, ammonium bicarbonate and/or sodium bicarbonate alone since the destruction values of such toxin after mixing were 96.2%, 92.8%, 92.6%, 89.0% and 87.7% respectively, while the baking effect ranged 20.9 to 34.5% in all leavening agents added. 相似文献
In order to meet the upscaling demand of food products worldwide, the aquaculture industry has been expanding within the last few years in developed countries. Major expansions of aquaculture farming occurred in many developed countries such as Bangladesh, Indonesia, and Egypt. Egypt ranks ninth in fish farming production worldwide and first on Africa. Egypt has the largest aquaculture industry in Africa which represents two-thirds of African aquaculture production. Tilapia production accounts for 75.5 % of aquaculture production in Egypt. Tilapia aquaculture production has grown exponentially in recent decades until it reached 4.5 million tonnes in 2012 placing Egypt as the second worldwide producer of tilapia after China. The production of tilapia is practiced in different production systems including intensive and semi-intensive systems. These production systems require different resources and impact differently on the environment. The aim of the current study was to model the environmental performance of tilapia production and compare semi-intensive and intensive production systems. The main questions were the following: What are the different impacts of tilapia production on the environment? Which production system is more environmentally friendly? What are the preferable practices for better environmental performance and sustainable ecofriendly industry of Tilapia production?
Methods
Life cycle assessment (LCA) was employed to determine the environmental impacts of tilapia production and compare semi-intensive and intensive production systems. Data for life cycle inventory were collected from two case study farms for tilapia production in Egypt. Four impact categories were taken into consideration: Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential (EP), and Cumulative Energy Demand (CED).
Results and discussion
LCA revealed that production of tilapia in intensive farming has less impact on GWP, AP, and CED, while its impact on EP is higher than in semi-intensive farming. The identified impacts from 1-tonne live weight production of tilapia were the following: GWP 960.7 and 6126.1 kg CO2 eq; AP 9.8 and 24.4 kg SO2 eq; EP 14.1 and 6.3 kg PO2 eq; and CED 52.8 GJ and 238.3 GJ eq in intensive and semi-intensive systems, respectively.
Conclusions
Fish meal production and energy consumption were the major contributors to different impact indicators in both systems. An overall improvement in environmental performance for tilapia production can be achieved by novel feed formulations that have better environmental performance. Energy consumption is a major area for improvement as well, as proper energy management practices will reduce the overall impact on the environment.
Characterizing large genomic variants is essential to expanding the research and clinical applications of genome sequencing. While multiple data types and methods are available to detect these structural variants (SVs), they remain less characterized than smaller variants because of SV diversity, complexity, and size. These challenges are exacerbated by the experimental and computational demands of SV analysis. Here, we characterize the SV content of a personal genome with Parliament, a publicly available consensus SV-calling infrastructure that merges multiple data types and SV detection methods.
Results
We demonstrate Parliament’s efficacy via integrated analyses of data from whole-genome array comparative genomic hybridization, short-read next-generation sequencing, long-read (Pacific BioSciences RSII), long-insert (Illumina Nextera), and whole-genome architecture (BioNano Irys) data from the personal genome of a single subject (HS1011). From this genome, Parliament identified 31,007 genomic loci between 100 bp and 1 Mbp that are inconsistent with the hg19 reference assembly. Of these loci, 9,777 are supported as putative SVs by hybrid local assembly, long-read PacBio data, or multi-source heuristics. These SVs span 59 Mbp of the reference genome (1.8%) and include 3,801 events identified only with long-read data. The HS1011 data and complete Parliament infrastructure, including a BAM-to-SV workflow, are available on the cloud-based service DNAnexus.
Conclusions
HS1011 SV analysis reveals the limits and advantages of multiple sequencing technologies, specifically the impact of long-read SV discovery. With the full Parliament infrastructure, the HS1011 data constitute a public resource for novel SV discovery, software calibration, and personal genome structural variation analysis.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1479-3) contains supplementary material, which is available to authorized users. 相似文献
Membrane-anchored complement regulatory proteins (CRPs), including CD46, CD55, and CD59, protect host cells from complement attack. In the present study, we investigated whether periodontopathogen lipopolysaccharide and proinflammatory cytokines modulate CRP gene/protein expression in human oral epithelial cells. The lipopolysaccharide of Treponema denticola and Tannerella forsythia were the most potent for increasing the gene expression of CD55 and CD59, and to a lesser extent CD46, after a 48-h stimulation. An lipopolysaccharide-induced upregulation of epithelial cell-surface CRP was also demonstrated. The stimulation of epithelial cells with lipopolysaccharide was associated with interleukin-6 (IL-6) and IL-8 secretion. Although these two cytokines had no effect on CD46 and CD55 gene expression in epithelial cells, IL-1β and tumor necrosis factor-α induced a significant upregulation. The cell-surface expression of CRP was also increased by the stimulation of epithelial cells with cytokines. The CD46, CD55, and CD59 gene/protein expression was upregulated by periodontopathogen lipopolysaccharide and proinflammatory cytokines. It can be hypothesized that, when faced with bacterial challenges and inflammatory conditions associated with active periodontal sites, oral epithelial cells may respond by increasing CRP gene/protein expression to avoid cell lysis by the complement system, which is activated during periodontitis. 相似文献
Polymorphic DNA in complex genomes of agronomic crops can be detected using specific nucleotide and arbitrary primers and
the polymerase chain reaction (PCR). Nineteen accessions representing 10 species of the wild perennial soybean were evaluated
using 4 sets of specific primers and 3 sets of random amplified polymorphic DNAs (RAPD) primers. The potential of the RAPD
assays was further increased by combining two primers in a single PCR. The fragments generated by the two assays discriminated
10 wild species by banding profiles. The size of the amplified DNA fragments ranged from 100 to 2100 base pairs. The resolved
PCR products yielded highly characteristic and homogeneous DNA fingerprints. The fingerprints were useful not only for investigating
genetic variability but also for further characterizing the wild soybean species by detecting inter- and intra-specific polymorphisms,
constructing dendrograms defining the phylogenetic relationships among these species, and identifying molecular markers for
the construction of genetic linkage maps. Furthermore, unique markers distinguishing particular species were also identified.
Thus, it is expected that PCR will have great relevance for taxonomic studies.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
Real-time accurate traffic congestion prediction can enable Intelligent traffic management systems (ITMSs) that replace traditional systems to improve the efficiency of traffic and reduce traffic congestion. The ITMS consists of three main layers, which are: Internet of Things (IoT), edge, and cloud layers. Edge can collect real-time data from different routes through IoT devices such as wireless sensors, and then it can compute and store this collected data before transmitting them to the cloud for further processing. Thus, an edge is an intermediate layer between IoT and cloud layers that can receive the transmitted data through IoT to overcome cloud challenges such as high latency. In this paper, a novel real-time traffic congestion prediction strategy (TCPS) is proposed based on the collected data in the edge’s cache server at the edge layer. The proposed TCPS contains three stages, which are: (i) real-time congestion prediction (RCP) stage, (ii) congestion direction detection (CD2) stage, and (iii) width change decision (WCD) stage. The RCP aims to predict traffic congestion based on the causes of congestion in the hotspot using a fuzzy inference system. If there is congestion, the CD2 stage is used to detect the congestion direction based on the predictions from the RCP by using the Optimal Weighted Naïve Bayes (OWNB) method. The WCD stage aims to prevent the congestion occurrence in which it is used to change the width of changeable routes (CR) after detecting the direction of congestion in CD2. The experimental results have shown that the proposed TCPS outperforms other recent methodologies. TCPS provides the highest accuracy, precision, and recall. Besides, it provides the lowest error, with values equal to 95%, 74%, 75%, and 5% respectively.