首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   5篇
  2022年   4篇
  2021年   7篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   7篇
  2014年   8篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有106条查询结果,搜索用时 31 毫秒
31.
In Vitro Cellular & Developmental Biology - Plant - Astragalus brachypterus Fischer (milkvetch) is a perennial medicinal plant in the family Fabaceae. Astragalus species have been utilized as...  相似文献   
32.
Budak M  Korkmaz EM  Basibuyuk HH 《ZooKeys》2011,(130):363-378
Cephinae is traditionally divided into three tribes and about 24 genera based on morphology and host utilization. There has been no study testing the monophyly of taxa under a strict phylogenetic criterion. A molecular phylogeny of Cephinae based on a total of 68 sequences of mtDNA COI gene, representing seven genera of Cephinae, is reconstructed to test the traditional limits and relationships of taxa. Monophyly of the traditional tribes is not supported. Monophyly of the genera are largely supported except for Pachycephus. A few host shift events are suggested based on phylogenetic relationships among taxa. These results indicate that a more robust phylogeny is required for a more plausible conclusion. We also report two species of Cephus for the first time from Turkey.  相似文献   
33.
Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α‐helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three‐state secondary structure prediction, and 94.8% for three‐state transmembrane span prediction. These accuracies are comparable to state‐of‐the‐art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org . Proteins 2013; 81:1127–1140. © 2013 Wiley Periodicals, Inc.  相似文献   
34.
The arylamine N-acetyltransferases (NATs) are a unique family of enzymes that catalyse the transfer of an acetyl group from acetyl-CoA to the terminal nitrogen of hydrazine and arylamine drugs and carcinogens. Human arylamine NATs are known to exist as two isoenzymes, NAT1 and NAT2. The objective of this study was to identify whether the genetic polymorphism of NAT2 plays a role in susceptibility to Diabetes Mellitus (DM). Ninety-seven patients with DM and 104 healthy controls were enrolled in the study. NAT2*5A, NAT2*6A, NAT2*7A/B and NAT2*14A polymorphisms were detected by using real time PCR with LightCycler (Roche Diagnostics GmbH, Mannheim, Germany). According to our data, the NAT2*5A and NAT2*6A mutant genotypes and NAT2*14A heterozygous genotype were associated with an increased risk of development of DM (OR = 47.06; 95%CI: 10.55-209.77 for NAT 2*5A, OR = 18.48; 95%CI: 3.83-89.11 for NAT2*6A and OR = 18.22; 95%CI: 6.29-52.76 for NAT2*14A). However, the NAT2*7A/B gene polymorphism carried no increased risk for developing DM disease. After grouping according to phenotypes as either slow or fast acetylators, NAT2*6A slow acetylator was found to be a significant risk factor for DM (OR = 6.09; 95%CI: 1.99-18.6, p = 0.02). The results indicate that NAT2 slow acetylator genotypes may be an important genetic determinant for DM in the Turkish population.  相似文献   
35.
Ascorbate is one of the key participants of the antioxidant defense in plants. In this work, we have investigated the interaction of ascorbate with the chloroplast electron transport chain and isolated photosystem I (PSI), using the EPR method for monitoring the oxidized centers \( {\text{P}}_{700}^{ + } \) and ascorbate free radicals. Inhibitor analysis of the light-induced redox transients of P700 in spinach thylakoids has demonstrated that ascorbate efficiently donates electrons to \( {\text{P}}_{ 7 0 0}^{ + } \) via plastocyanin. Inhibitors (DCMU and stigmatellin), which block electron transport between photosystem II and Pc, did not disturb the ascorbate capacity for electron donation to \( {\text{P}}_{700}^{ + } \) . Otherwise, inactivation of Pc with CN? ions inhibited electron flow from ascorbate to \( {\text{P}}_{700}^{ + } \) . This proves that the main route of electron flow from ascorbate to \( {\text{P}}_{700}^{ + } \) runs through Pc, bypassing the plastoquinone (PQ) pool and the cytochrome b 6 f complex. In contrast to Pc-mediated pathway, direct donation of electrons from ascorbate to \( {\text{P}}_{700}^{ + } \) is a rather slow process. Oxidized ascorbate species act as alternative oxidants for PSI, which intercept electrons directly from the terminal electron acceptors of PSI, thereby stimulating photooxidation of P700. We investigated the interaction of ascorbate with PSI complexes isolated from the wild type cells and the MenB deletion strain of cyanobacterium Synechocystis sp. PCC 6803. In the MenB mutant, PSI contains PQ in the quinone-binding A1-site, which can be substituted by high-potential electron carrier 2,3-dichloro-1,4-naphthoquinone (Cl2NQ). In PSI from the MenB mutant with Cl2NQ in the A1-site, the outflow of electrons from PSI is impeded due to the uphill electron transfer from A1 to the iron-sulfur cluster FX and further to the terminal clusters FA/FB, which manifests itself as a decrease in a steady-state level of \( {\text{P}}_{700}^{ + } \) . The addition of ascorbate promoted photooxidation of P700 due to stimulation of electron outflow from PSI to oxidized ascorbate species. Thus, accepting electrons from PSI and donating them to \( {\text{P}}_{700}^{ + } \) , ascorbate can mediate cyclic electron transport around PSI. The physiological significance of ascorbate-mediated electron transport is discussed.  相似文献   
36.
37.

Background

Burkholderia cepacia complex (BCC) bacteria are highly virulent, typically multidrug-resistant, opportunistic pathogens in cystic fibrosis (CF) patients and other immunocompromised individuals. B. vietnamiensis is more often susceptible to aminoglycosides than other BCC species, and strains acquire aminoglycoside resistance during chronic CF infection and under tobramycin and azithromycin exposure in vitro, apparently from gain of antimicrobial efflux as determined through pump inhibition. The aims of the present study were to determine if oxidative stress could also induce aminoglycoside resistance and provide further observations in support of a role for antimicrobial efflux in aminoglycoside resistance in B. vietnamiensis.

Findings

Here we identified hydrogen peroxide as an additional aminoglycoside resistance inducing agent in B. vietnamiensis. After antibiotic and hydrogen peroxide exposure, isolates accumulated significantly less [3H] gentamicin than the susceptible isolate from which they were derived. Strains that acquired aminoglycoside resistance during infection and after exposure to tobramycin or azithromycin overexpressed a putative resistance-nodulation-division (RND) transporter gene, amrB. Missense mutations in the repressor of amrB, amrR, were identified in isolates that acquired resistance during infection, and not in those generated in vitro.

Conclusions

These data identify oxidative stress as an inducer of aminoglycoside resistance in B. vietnamiensis and further suggest that active efflux via a RND efflux system impairs aminoglycoside accumulation in clinical B. vietnamiensis strains that have acquired aminoglycoside resistance, and in those exposed to tobramycin and azithromycin, but not hydrogen peroxide, in vitro. Furthermore, the repressor AmrR is likely just one regulator of the putative AmrAB-OprM efflux system in B. vietnamiensis.  相似文献   
38.
Photosystem I (PS I) has two nearly identical branches of electron-transfer co-factors. Based on point mutation studies, there is general agreement that both branches are active at ambient temperature but that the majority of electron-transfer events occur in the A-branch. At low temperature, reversible electron transfer between P(700) and A(1A) occurs in the A-branch. However, it has been postulated that irreversible electron transfer from P(700) through A(1B) to the terminal iron-sulfur clusters F(A) and F(B) occurs via the B-branch. Thus, to study the directionality of electron transfer at low temperature, electron transfer to the iron-sulfur clusters must be blocked. Because the geometries of the donor-acceptor radical pairs formed by electron transfer in the A- and B-branch differ, they have different spin-polarized EPR spectra and echo-modulation decay curves. Hence, time-resolved, multiple-frequency EPR spectroscopy, both in the direct-detection and pulse mode, can be used to probe the use of the two branches if electron transfer to the iron-sulfur clusters is blocked. Here, we use the PS I variant from the menB deletion mutant strain of Synechocyctis sp. PCC 6803, which is unable to synthesize phylloquinone, to incorporate 2,3-dichloro-1,4-naphthoquinone (Cl(2)NQ) into the A(1A) and A(1B) binding sites. The reduction midpoint potential of Cl(2)NQ is approximately 400 mV more positive than that of phylloquinone and is unable to transfer electrons to the iron-sulfur clusters. In contrast to previous studies, in which the iron-sulfur clusters were chemically reduced and/or point mutations were used to prevent electron transfer past the quinones, we find no evidence for radical-pair formation in the B-branch. The implications of this result for the directionality of electron transfer in PS I are discussed.  相似文献   
39.
Interaction of photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 containing various quinones in the A1-site (phylloquinone PhQ in the wild-type strain (WT), and plastoquinone PQ or 2,3-dichloronaphthoquinone Cl 2 NQ in the menB deletion strain) and different numbers of Fe4S4 clusters (intact WT and FX-core complexes depleted of FA/FB centers) with external acceptors has been studied. The efficiency of interaction was estimated by measuring the light-induced absorption changes at 820 nm due to the reduction of the special pair of chlorophylls (P700 +) by an external acceptor(s). It was shown that externally added Cl 2 NQ is able to effectively accept electrons from the terminal iron-sulfur clusters of PS I. Moreover, the efficiency of Cl 2 NQ as external acceptor was higher than the efficiency of the commonly used artificial electron acceptor, methylviologen (MV) for both the intact WT PS I and for the FX-core complexes. The comparison of the efficiency of MV interaction with different types of PS I complexes revealed gradual decrease in the following order: intact WT?>?menB?>?FX-core. The effect of MV on the recombination kinetics in menB complexes of PS I with Cl 2 NQ in the A1-site differed significantly from all other PS I samples. The obtained effects are considered in terms of kinetic efficiency of electron acceptors in relation to thermodynamic and structural characteristics of PS I complexes.  相似文献   
40.
Reactive oxygen and nitrogen species have been implicated in the pathogenesis of bleomycin-induced lung fibrosis. The effects of aminoguanidine and erdosteine on the bleomycin-induced lung fibrosis were evaluated in rats. The animals were placed into five groups: Vehicle + vehicle, vehicle + bleomycin (2.5 U/kg), bleomycin + aminoguanidine (200 mg/kg), bleomycin + erdosteine (10 mg/kg), and bleomycin + erdosteine + aminoguanidine. Bleomycin administration resulted in prominent lung fibrosis as measured by lung hydroxyproline content and lung histology, which is completely prevented by erdosteine and aminoguanidine. A strong staining for nitro tyrosine antibody in lung tissue and increased levels of lung NO were found in bleomycin group, that were significantly reduced by aminoguanidine and erdosteine. Aminoguanidine and erdosteine significantly prevented depletion of superoxide dismutase and glutathione peroxidase and elevated myeloperoxidase activities, malondialdehyde level in lung tissue produced by bleomycin. Data presented here indicate that aminoguanidine and erdosteine prevented bleomycin-induced lung fibrosis and that nitric oxide mediated tyrosine nitration of proteins plays a significant role in the pathogenesis of bleomycin-induced lung fibrosis. Also our data suggest that antifibrotic affect of antioxidants may be due to their inhibitory effect on nitric oxide generation in this model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号