首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  24篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
11.
Cdc25C is a cell cycle protein of the dual specificity phosphatase family essential for activating the cdk1/Cyclin B1 complex in cells entering into mitosis. Since altered cell cycle is a hallmark of human cancers, we investigated androgen regulation of Cdc25C protein in human prostate cancer (PCa) cells, including androgen-sensitive (AS) LNCaP C-33 cells and androgen-independent (AI) LNCaP C-81 as well as PC-3 cells. In the regular culture condition containing fetal bovine serum (FBS), Cdc25C protein levels were similar in these PCa cells. In a steroid-reduced condition, Cdc25C protein was greatly decreased in AS C-33 cells but not AI C-81 or PC-3 cells. In androgen-treated C-33 cells, the Cdc25C protein level was greatly elevated, following a dose- and a time-dependent manner, correlating with increased cell proliferation. This androgen effect was blocked by Casodex, an androgen receptor blocker. Nevertheless, epidermal growth factor (EGF), a growth stimulator of PCa cells, could only increase Cdc25C protein level by about 1.5-fold. Altered expression of Cdc25C in C-33 cells and PC-3 cells by cDNA and/or shRNA transfection is associated with the corresponding changes of cell growth and Cyclin B1 protein level. Actinomycin D and cycloheximide could only partially block androgen-induced Cdc25C protein level. Treatments with both proteasomal and lysosomal inhibitors resulted in elevated Cdc25C protein levels. Immunoprecipitation revealed that androgens reduced the ubiquitination of Cdc25C proteins. These results show for the first time that Cdc25C protein plays a role in regulating PCa cell growth, and androgen treatments, but not EGF, greatly increase Cdc25C protein levels in AS PCa cells, which is in part by decreasing its degradation. These results can lead to advanced PCa therapy via up-regulating the degradation pathways of Cdc25C protein.  相似文献   
12.
NOSs (NO synthases, EC 1.14.13.39) are haem-thiolate enzymes that catalyse a two-step oxidation of L-arginine to generate NO. The structural and electronic features that regulate their NO synthesis activity are incompletely understood. To investigate how haem electronics govern the catalytic properties of NOS, we utilized a bacterial haem transporter protein to overexpress a mesohaem-containing nNOS (neuronal NOS) and characterized the enzyme using a variety of techniques. Mesohaem-nNOS catalysed NO synthesis and retained a coupled NADPH consumption much like the wild-type enzyme. However, mesohaem-nNOS had a decreased rate of Fe(III) haem reduction and had increased rates for haem-dioxy transformation, Fe(III) haem-NO dissociation and Fe(II) haem-NO reaction with O2. These changes are largely related to the 48 mV decrease in haem midpoint potential that we measured for the bound mesohaem cofactor. Mesohaem nNOS displayed a significantly lower Vmax and KmO2 value for its NO synthesis activity compared with wild-type nNOS. Computer simulation showed that these altered catalytic behaviours of mesohaem-nNOS are consistent with the changes in the kinetic parameters. Taken together, the results of the present study reveal that several key kinetic parameters are sensitive to changes in haem electronics in nNOS, and show how these changes combine to alter its catalytic behaviour.  相似文献   
13.
The FMN module of nitric-oxide synthase (NOS) plays a pivotal role by transferring NADPH-derived electrons to the enzyme heme for use in oxygen activation. The process may involve a swinging mechanism in which the same face of the FMN module accepts and provides electrons during catalysis. Crystal structure shows that this face of the FMN module is electronegative, whereas the complementary interacting surface is electropositive, implying that charge interactions enable function. We used site-directed mutagenesis to investigate the roles of six electronegative surface residues of the FMN module in electron transfer and catalysis in neuronal NOS. Results are interpreted in light of crystal structures of NOS and related flavoproteins. Neutralizing or reversing the negative charge of each residue altered the NO synthesis, NADPH oxidase, and cytochrome c reductase activities of neuronal NOS and also altered heme reduction. The largest effects occurred at the NOS-specific charged residue Glu(762). Together, the results suggest that electrostatic interactions of the FMN module help to regulate electron transfer and to minimize flavin autoxidation and the generation of reactive oxygen species during NOS catalysis.  相似文献   
14.
ATP hydrolysis by plasma membrane H+-ATPase from Candida albicans has been investigated in presence of nitric oxide and various nutrients (sugars and amino acids). Sodium nitroprusside (SNP) was used as nitric oxide donor. It was found that ATP concentration decreased in SNP treated cells which was more in presence of sugars like glucose, xylose and 2-deoxy-D-glucose and amino acids as compared to their respective controls. The activity of H+-ATPase from plasma membrane decreased by 70 % in SNP treated cells. Both in vivo and in vitro treatments of SNP showed almost similar effects of decrease in ATPase activity. Effect of SNP was more pronounced in presence of nutrients. Interestingly, it was observed that vanadate did not show any independent effect in presence of nitric oxide. Several workers have reported similar type of results with other P-type ATPases. For the first time, it was observed in the present study that in presence of nitric oxide, H+-ATPase activity decreased like other P-type ATPases. Our study indicated that NO had a significant effect on ATP synthesis and activity of H+- ATPase. In the presence of NO, the ATP concentration was decreased indicating it affected mitochondrial electron transport chain. It may be concluded that NO, not only affects (inhibit) mitochondrial electron transport chain but also interferes with H+- ATPase of plasma membrane by changing its conformation resulting in decreased activity.  相似文献   
15.
In the present study tentative link has been established between H+ -efflux and effect of NO in presence of various nutrients (glucose, 2-deoxy-D-glucose, xylose, proline, glutamic acid and lysine) in C. albicans using sodium nitroprusside (SNP) as a potent source of NO. It was observed that there was a decreasing trend in pH with time, in control, while SNP treated cells showed an initial decline in pH for 10-15 min, followed by an increase in pH up to 30 min. In presence of glucose there was an enhancement in H+ -efflux by 9-fold whereas proline, glutamic acid and lysine showed enhancement by 3, 6 and 1.5-fold respectively. Similar trends in increase in pH after 15 min in SNP treated cells of Candida was observed in presence of all nutrients used. It was demonstrated for the first time that H+ -ATPase of C. albicans was affected by NO.  相似文献   
16.

Background

p66Shc, an isoform of Shc adaptor proteins, mediates diverse signals, including cellular stress and mouse longevity. p66Shc protein level is elevated in several carcinomas and steroid-treated human cancer cells. Several lines of evidence indicate that p66Shc plays a critical role in steroid-related carcinogenesis, and steroids play a role in its elevated levels in those cells without known mechanism.

Methods and Findings

In this study, we investigated the molecular mechanism by which steroid hormones up-regulate p66Shc protein level. In steroid-treated human prostate and ovarian cancer cells, p66Shc protein levels were elevated, correlating with increased cell proliferation. These steroid effects on p66Shc protein and cell growth were competed out by the respective antagonist. Further, actinomycin D and cyclohexamide could only partially block the elevated p66Shc protein level by steroids. Treatment with proteasomal inhibitors, but not lysosomal protease inhibitor, resulted in elevated p66Shc protein levels, even higher than that by steroids. Using prostate cancer cells as a model, immunoprecipitation revealed that androgens and proteasomal inhibitors reduce the ubiquitinated p66Shc proteins.

Conclusions

The data collectively indicate that functional steroid receptors are required in steroid up-regulation of p66Shc protein levels in prostate and ovarian cancer cells, correlating with cell proliferation. In these steroid-treated cells, elevated p66Shc protein level is apparently in part due to inhibiting its ubiquitination. The results may lead to an impact on advanced cancer therapy via the regulation of p66Shc protein by up-regulating its ubiquitination pathway.  相似文献   
17.
Summary Angiogenesis is essential for development, growth and advancement of solid tumors. Cyclooxygenase (COX)-2 is recognized as an angiogenic factor in various tumors. This prompted us to study the clinical implications of COX-2 expression related to angiogenesis in uterine cervical cancers. There was a significant correlation between microvessel counts and COX-2 levels in uterine cervical cancers. COX-2 localized in the cancer cells, but not in the stromal cells of uterine cervical cancer tissues. COX-2 levels increased with advancement, and the prognosis of the 30 patients with high COX-2 expression in uterine cervical cancers was poor (60%), while the 24-month survival rate of the other 30 patients with low COX-2 expression was 90%. Furthermore, COX-2 levels significantly correlated with VEGF levels in uterine cervical cancers. VEGF associated with COX-2 might work on angiogenesis in advancement. Therefore, long-term administration of COX-2 inhibitors might be effective on the suppression of regrowth or recurrence after intensive treatment for advanced uterine cervical cancers.  相似文献   
18.
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that N-hydroxylate L-arginine (L-Arg) to make NO. NOS contain a unique Trp residue whose side chain stacks with the heme and hydrogen bonds with the heme thiolate. To understand its importance we substituted His for Trp188 in the inducible NOS oxygenase domain (iNOSoxy) and characterized enzyme spectral, thermodynamic, structural, kinetic, and catalytic properties. The W188H mutation had relatively small effects on l-Arg binding and on enzyme heme-CO and heme-NO absorbance spectra, but increased the heme midpoint potential by 88 mV relative to wild-type iNOSoxy, indicating it decreased heme-thiolate electronegativity. The protein crystal structure showed that the His188 imidazole still stacked with the heme and was positioned to hydrogen bond with the heme thiolate. Analysis of a single turnover L-Arg hydroxylation reaction revealed that a new heme species formed during the reaction. Its build up coincided kinetically with the disappearance of the enzyme heme-dioxy species and with the formation of a tetrahydrobiopterin (H4B) radical in the enzyme, whereas its subsequent disappearance coincided with the rate of l-Arg hydroxylation and formation of ferric enzyme. We conclude: (i) W188H iNOSoxy stabilizes a heme-oxy species that forms upon reduction of the heme-dioxy species by H4B. (ii) The W188H mutation hinders either the processing or reactivity of the heme-oxy species and makes these steps become rate-limiting for l-Arg hydroxylation. Thus, the conserved Trp residue in NOS may facilitate formation and/or reactivity of the ultimate hydroxylating species by tuning heme-thiolate electronegativity.  相似文献   
19.
The effect of glucose and 2-deoxy-D-glucose on pre-steady state kinetics of ATP hydrolysis by Na,K-ATPase has been investigated by following pH transients in a stopped-flow spectrophotometer. A typical pre-steady state signal showed an initial decrease then subsequent increase in acidity. Under optimal Na^+ (120 mM) and K^+ (30 mM) concentrations, magnitudes of both H^+ release and H^+ absorption were found to be approximately 1.0/ATPase molecule. The presence of 1 mM glucose significantly decreased H^+ absorption at high Na^+ concentrations, whereas it was ineffective at low Na^+. H^+ release was decreased significantly in the presence of 1 mM glucose at Na^+ concentrations ranging from 30 mM to 120 mM. Similar to the control, K^+ did not show any effect on either H^+ release or H^+ absorption at all tested combinations of Na^+ and K^+ concentrations. Pre-steady state H^+ signal obtained in the presence of 2-deoxy-D-glucose did not vary significantly as compared with glucose. Delayed addition of K^+ (by 30 ms) to the mixture (enzyme+ 120 mM Na^+ATP+glucose) showed that only small fractions of population absorb H^+ in the absence of K^+. No H^+ absorption was observed in the absence of Na^+. Delayed mixing of Na^+ or K^+ did not have any effect on H^+ release. Effect of 2-deoxy-D-glucose on H^ absorption and release was almost the same as that of glucose at all combinations of Na^+ and K^+ concentrations. Results obtained have been discussed in terms of an extended kinetic scheme which shows that, in the presence of either glucose or 2-deoxy-D-glucose, significantly fewer enzyme molecules reache the E-P(3Na+) stage and that K^ plays an important role in the conversion of E1 .ADP.P(3Na^+) to H^+.E1-(3Na^+) complex.  相似文献   
20.
Heat shock protein 90 (hsp90) drives heme insertion into the β1 subunit of soluble guanylate cyclase (sGC) β1, which enables it to associate with a partner sGCα1 subunit and mature into a nitric oxide (NO)-responsive active form. We utilized fluorescence polarization measurements and hydrogen-deuterium exchange mass spectrometry to define molecular interactions between the specific human isoforms hsp90β and apo-sGCβ1. hsp90β and its isolated M domain, but not its isolated N and C domains, bind with low micromolar affinity to a heme-free, truncated version of sGCβ1 (sGCβ1(1–359)-H105F). Surprisingly, hsp90β and its M domain bound to the Per-Arnt-Sim (PAS) domain of apo-sGC-β1(1–359), which lies adjacent to its heme-binding (H-NOX) domain. The interaction specifically involved solvent-exposed regions in the hsp90β M domain that are largely distinct from sites utilized by other hsp90 clients. The interaction strongly protected two regions of the sGCβ1 PAS domain and caused local structural relaxation in other regions, including a PAS dimerization interface and a segment in the H-NOX domain. Our results suggest a means by which the hsp90β interaction could prevent apo-sGCβ1 from associating with its partner sGCα1 subunit while enabling structural changes to assist heme insertion into the H-NOX domain. This mechanism would parallel that in other clients like the aryl hydrocarbon receptor and HIF1α, which also interact with hsp90 through their PAS domains to control protein partner and small ligand binding interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号