首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1138篇
  免费   158篇
  1296篇
  2023年   9篇
  2022年   18篇
  2021年   18篇
  2020年   11篇
  2019年   17篇
  2018年   20篇
  2017年   32篇
  2016年   39篇
  2015年   46篇
  2014年   64篇
  2013年   79篇
  2012年   88篇
  2011年   88篇
  2010年   46篇
  2009年   44篇
  2008年   60篇
  2007年   57篇
  2006年   48篇
  2005年   51篇
  2004年   33篇
  2003年   37篇
  2002年   42篇
  2001年   29篇
  2000年   26篇
  1999年   21篇
  1998年   13篇
  1997年   8篇
  1996年   14篇
  1995年   13篇
  1994年   15篇
  1993年   15篇
  1992年   10篇
  1991年   15篇
  1990年   15篇
  1989年   12篇
  1988年   15篇
  1987年   10篇
  1986年   7篇
  1985年   6篇
  1984年   11篇
  1983年   7篇
  1982年   8篇
  1980年   6篇
  1979年   6篇
  1977年   10篇
  1976年   8篇
  1975年   5篇
  1974年   5篇
  1972年   4篇
  1971年   4篇
排序方式: 共有1296条查询结果,搜索用时 15 毫秒
81.
Hermansky-Pudlak syndrome (HPS) is genetically heterogeneous, and mutations in seven genes have been reported to cause HPS. Autozygosity mapping studies were undertaken in a large consanguineous family with HPS. Affected individuals displayed features of incomplete oculocutaneous albinism and platelet dysfunction. Skin biopsy demonstrated abnormal aggregates of melanosomes within basal epidermal keratinocytes. A homozygous germline frameshift mutation in BLOC1S3 (p.Gln150ArgfsX75) was identified in all affected individuals. BLOC1S3 mutations have not been previously described in patients with HPS, but BLOC1S3 encodes a subunit of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Mutations in other BLOC-1 subunits have been associated with an HPS phenotype in humans and/or mouse, and a nonsense mutation in the murine orthologue of BLOC1S3 causes the reduced pigmentation (rp) model of HPS. Interestingly, eye pigment formation is reported to be normal in rp, but we found visual defects (nystagmus, iris transilluminancy, foveal hypoplasia, reduced visual acuity, and evidence of optic pathway misrouting) in affected individuals. These findings define a novel form of human HPS (HPS8) and extend genotype-phenotype correlations in HPS.  相似文献   
82.
Vascular endothelial growth factor (VEGF) exerts crucial functions during pathological angiogenesis and normal physiology. We observed increased hematocrit (60-75%) after high-grade inhibition of VEGF by diverse methods, including adenoviral expression of soluble VEGF receptor (VEGFR) ectodomains, recombinant VEGF Trap protein and the VEGFR2-selective antibody DC101. Increased production of red blood cells (erythrocytosis) occurred in both mouse and primate models, and was associated with near-complete neutralization of VEGF corneal micropocket angiogenesis. High-grade inhibition of VEGF induced hepatic synthesis of erythropoietin (Epo, encoded by Epo) >40-fold through a HIF-1alpha-independent mechanism, in parallel with suppression of renal Epo mRNA. Studies using hepatocyte-specific deletion of the Vegfa gene and hepatocyte-endothelial cell cocultures indicated that blockade of VEGF induced hepatic Epo by interfering with homeostatic VEGFR2-dependent paracrine signaling involving interactions between hepatocytes and endothelial cells. These data indicate that VEGF is a previously unsuspected negative regulator of hepatic Epo synthesis and erythropoiesis and suggest that levels of Epo and erythrocytosis could represent noninvasive surrogate markers for stringent blockade of VEGF in vivo.  相似文献   
83.
84.
85.
The binding sites for the lectins wheat germ agglutinin, Ricinus communis agglutinin and concanavalin A on mouse neuroblastoma cell membranes were identified using SDS-gel electrophoresis in combination with fluorescent lectins. Ricinus communis agglutinin and wheat germ agglutinin were found to bind almost exclusively to a single polypeptide with an apparent molecular weight of 30 000. Concanavalin A labeled over 20 different polypeptides, most with molecular weights greater than 50 000. However, when the neuroblastoma cells were treated with concanavalin A so as to internalize all the concanavalin A binding sites visible at the level of the fluorescent microscope and the purified plasma membranes analyzed for their concanavalin A binding polypeptides, only four of the 20 glycopolypeptides were missing or significantly reduced in amount. Thus, these four high molecular weight concanavalin A-binding polypeptides appear to be the major cell surface receptors for concanavalin A. Binding studies with iodinated concanavalin A indicated that these polypeptides represented the high affinity concanavalin A binding sites Kd = 2 · 10?7M). Low affinity concanavalin A binding sites were present on the cell surface after internalization of high affinity concanavalin A binding sites.  相似文献   
86.
Metabolic alterations after surgical stress include peripheral insulin resistance and increased utilization of fat as a fuel substrate. An up-regulation of skeletal muscle uncoupling proteins (UCPs) has been associated with physiologic states of insulin resistance and enhanced fat metabolism in rodents. We examined whether posttraumatic insulin resistance induced the UCPs in gastrocnemius and soleus muscle and white adipose tissue in an experimental model of surgical trauma. Insulin sensitivity was significantly reduced in isolated soleus muscles but unchanged in adipocytes after trauma. In traumatized rats, mRNA and protein contents of UCP2 and UCP3 and were significantly increased in both muscle types. UCP2 protein content in adipose tissue was unaltered by surgical stress. Circulating NEFAs and glycerol were reduced after surgical trauma. We hypothesize that the changes in UCP2 and UCP3 gene and protein expression are involved in the regulation of substrate utilization in posttraumatic insulin resistance.  相似文献   
87.
The single-copy gene for fibroblast growth factor-2 (FGF-2) encodes for multiple forms of the protein with molecular masses of 24, 22.5, 22, and 18 kDa. We reported previously that the 24-22-kDa FGF-2 forms inhibit the migration of endothelial and MCF-7 cells by 50% and 70%, respectively. Here we show that this inhibition of migration is mediated by the estrogen receptor (ER). We have found that depletion of the receptor in either cell line abrogates the inhibitory activity of 24-kDa FGF-2 while re-introduction of the ER into deficient cells once again promotes the inhibitory response. To determine whether exposure to 24-kDa FGF-2 resulted in the activation of the estrogen receptor, 3T3 cells were cotransfected with estrogen receptor cDNA and an estrogen regulatory element-luciferase gene reporter construct and treated with 24- and 18-kDa FGF-2. The high molecular weight form stimulated luciferase activity 5-fold while 18-kDa FGF-2 at the same concentration had no effect. Treatment of ER-positive MCF-7 cells transfected with the reporter construct only showed the same results. Inclusion of the pure estrogen antagonist ICI 182,780 blocked the increase in luciferase activity by 24-kDa FGF-2, further indicating that the response was estrogen receptor dependent. Expression of dominant negative FGF receptor 1 inhibited ER activation, indicating that this was the cell surface receptor mediating the effect. Although growth factor-dependent activation of the ER was reported to require mitogen-activated protein kinase-induced phosphorylation at Ser(118) in COS and HeLa cells, this mechanism is not involved with the activation by 24-kDa FGF-2. These results suggest that the addition of 55 amino acids to the amino-terminal end of 18-kDa FGF-2 by alternative translation alters FGF-2 function and allows for the activation of a second signaling pathway involving the estrogen receptor.  相似文献   
88.
Oxidative stress and highly specific decreases in glutathione (GSH) are associated with nerve cell death in Parkinson's disease. Using an experimental nerve cell model for oxidative stress and an expression cloning strategy, a gene involved in oxidative stress-induced programmed cell death was identified which both mediates the cell death program and regulates GSH levels. Two stress-resistant clones were isolated which contain antisense gene fragments of the translation initiation factor (eIF)2alpha and express a low amount of eIF2alpha. Sensitivity is restored when the clones are transfected with full-length eIF2alpha; transfection of wild-type cells with the truncated eIF2alpha gene confers resistance. The phosphorylation of eIF2alpha also results in resistance to oxidative stress. In wild-type cells, oxidative stress results in rapid GSH depletion, a large increase in peroxide levels, and an influx of Ca(2+). In contrast, the resistant clones maintain high GSH levels and show no elevation in peroxides or Ca(2+) when stressed, and the GSH synthetic enzyme gamma-glutamyl cysteine synthetase (gammaGCS) is elevated. The change in gammaGCS is regulated by a translational mechanism. Therefore, eIF2alpha is a critical regulatory factor in the response of nerve cells to oxidative stress and in the control of the major intracellular antioxidant, GSH, and may play a central role in the many neurodegenerative diseases associated with oxidative stress.  相似文献   
89.
Alpha-naphthylisothiocyanate (ANIT) is a hepatotoxin that causes severe neutrophilic inflammation around portal tracts and bile ducts. The chemotactic signals that provoke this inflammatory response are unknown. In this study, we addressed the possibility that ANIT upregulates CXC chemokines in the liver and that these compounds mediate hepatic inflammation and tissue injury after ANIT treatment. Mice treated with a single dose of ANIT (50 mg/kg) exhibited rapid hepatic induction of the CXC chemokine macrophage inflammatory protein-2 (MIP-2). MIP-2 derived primarily from hepatocytes, with no apparent contribution by biliary cells. In ANIT-treated mice, the induction of MIP-2 coincided with an influx of neutrophils to portal zones; this hepatic neutrophil recruitment was suppressed by 50% in mice that lack the receptor for MIP-2 (CXCR2(-/-)). Interestingly, despite their markedly reduced degree of hepatic inflammation, CXCR2(-/-) mice displayed just as much hepatocellular injury and cholestasis after ANIT treatment as wild-type mice. Moreover, after long-term exposure, ANIT CXCR2(-/-) mice developed liver fibrosis that was indistinguishable from that in wild-type mice. In summary, our data show that CXC chemokines are responsible for some of the hepatic inflammation that occurs in response to ANIT but that these compounds are not essential to the pathogenesis of either acute or chronic ANIT hepatotoxicity.  相似文献   
90.
Von Hippel-Lindau disease   总被引:8,自引:0,他引:8  
Germline mutations in the VHL tumour suppressor gene may cause a variety of phenotypes including von Hippel-Lindau (VHL) disease, familial phaeochromocytoma and inherited polycythaemia. VHL disease is a multisystem familial cancer syndrome and is the commonest cause of familial renal cell carcinoma (RCC). VHL disease provides a paradigm for illustrating how studies of a rare familial cancer syndrome can produce advances in clinical medicin and important insights into basic biological processes. Thus the identification of the VHL gene has improved the diagnosis and clinical management of VHL disease and provided insights into the pathogenesis of sporadic clear cell RCC. Functional investigations of the VHL gene product have provided novel information on how cells sense oxygen and the role of hypoxia-response pathways in human tumourigenesis. Such information offers prospects of novel therapeutic interventions for VHL disease and common cancers including RCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号