首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   26篇
  2023年   3篇
  2022年   3篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   18篇
  2017年   8篇
  2016年   13篇
  2015年   20篇
  2014年   29篇
  2013年   28篇
  2012年   41篇
  2011年   41篇
  2010年   12篇
  2009年   19篇
  2008年   27篇
  2007年   23篇
  2006年   15篇
  2005年   19篇
  2004年   24篇
  2003年   15篇
  2002年   20篇
  2001年   9篇
  2000年   1篇
  1999年   3篇
  1997年   4篇
  1996年   1篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1974年   4篇
  1973年   5篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有479条查询结果,搜索用时 31 毫秒
61.
62.
Nanotechnology is the creation and use of materials and devices on the same scale as molecules and intracellular structures, typically less than 100?nm in size. It is an emerging science and has made its way into pharmaceuticals to significantly improve the delivery and efficacy of drugs in a number of therapeutic areas, due to development of various nanoparticle-based products. In recent years, there has been increasing evidence that nanotechnology can help to overcome many of the ocular diseases and hence researchers are keenly interested in this science. Nanomedicines offer promise as viable alternatives to conventional drops, gels or ointments to improve drug delivery to the eye. Because of their small size, they are well tolerated, thus preventing washout, increase bioavailability and also help in specific drug delivery. This review describes the application of nanotechnology in the control of human diseases with special emphasis on various eye and ocular surfaces diseases.  相似文献   
63.
64.
Mono- and biphasic kinetic effects of bile salts on the pancreatic IB phospholipase A2 (PLA2) catalyzed interfacial hydrolysis are characterized. This novel phenomenon is modeled as allosteric action of bile salts with PLA2 at the interface. The results and controls also show that these kinetic effects are not due to surface dilution or solubilization or disruption of the bilayer interface where in the mixed-micelles substrate replenishment becomes the rate-limiting step. The PLA2-catalyzed rate of hydrolysis of zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles depends on the concentration and structure of the bile salt. The sigmoidal rate increase with cholate saturates at 0.06 mole fraction and changes little at the higher mole fractions. Also, with the rate-lowering bile salts (B), such as taurochenodeoxycholate (TCDOC), the initial sigmoidal rate increase at lower mole fraction is followed by nearly complete reversal to the rate at the pre-activation level at higher mole fractions. The rate-lowering effect of TCDOC is not observed with the (62-66)-loop deleted DeltaPLA2, or with the Naja venom PLA2 that is evolutionarily devoid of the loop. The rate increase is modeled with the assumption that the binding of PLA2 to DMPC interface is cooperatively promoted by bile salt followed by allosteric k(cat)(*)-activation of the bound enzyme by the anionic interface. The rate-lowering effect of bile salts is attributed to the formation of a specific catalytically inert E(*)B complex in the interface, which is noticeably different than the 1:1 EB complex in the aqueous phase. The cholate-activated rate of hydrolysis is lowered by hypolidemic ezetimibe and guggul extract which are not interfacial competitive inhibitors of PLA2. We propose that the biphasic modulation of the pancreatic PLA2 activity by bile salts regulates gastrointestinal fat metabolism and cholesterol homeostasis.  相似文献   
65.
During the steady state reaction progress in the scooting mode with highly processive turnover, Bacillus cereus sphingomyelinase (SMase) remains tightly bound to sphingomyelin (SM) vesicles (Yu et al., Biochim. Biophys. Acta 1583, 121-131, 2002). In this paper, we analyze the kinetics of SMase-catalyzed hydrolysis of SM dispersed in diheptanoylphosphatidyl-choline (DC7PC) micelles. Results show that the resulting decrease in the turnover processivity induces the stationary phase in the reaction progress. The exchange of the bound enzyme (E*) between the vesicle during such reaction progress is mediated via the premicellar complexes (Ei#) of SMase with DC7PC. Biophysical studies indicate that in Ei# monodisperse DC7PC is bound to the interface binding surface (i-face) of SMase that is also involved in its binding to micelles or vesicles. In the presence of magnesium, required for the catalytic turnover, three different complexes of SMase with monodisperse DC7PC (Ei# with i = 1, 2, 3) are sequentially formed with Hill coefficients of 3, 4 and 8, respectively. As a result, during the stationary phase reaction progress, the initial rate is linear for an extended period and all the substrate in the reaction mixture is hydrolyzed at the end of the reaction progress. At low mole fraction (X) of total added SM, exchange is rapid and the processive turnover is limited by the steps of the interfacial turnover cycle without becoming microscopically limited by local substrate depletion or enzyme exchange. At high X, less DC7PC will be monodisperse, Ei# does not form and the turnover becomes limited by slow enzyme exchange. Transferred NOESY enhancement results show that monomeric DC7PC in solution is in a rapid exchange with that bound to Ei# at a rate comparable to that in micelles. Significance of the exchange and equilibrium properties of the Ei# complexes for the interpretation of the stationary phase reaction progress is discussed.  相似文献   
66.
A novel Cas family member, HEPL, regulates FAK and cell spreading   总被引:1,自引:0,他引:1       下载免费PDF全文
For over a decade, p130Cas/BCAR1, HEF1/NEDD9/Cas-L, and Efs/Sin have defined the Cas (Crk-associated substrate) scaffolding protein family. Cas proteins mediate integrin-dependent signals at focal adhesions, regulating cell invasion and survival; at least one family member, HEF1, regulates mitosis. We here report a previously undescribed novel branch of the Cas protein family, designated HEPL (for HEF1-Efs-p130Cas-like). The HEPL branch is evolutionarily conserved through jawed vertebrates, and HEPL is found in some species lacking other members of the Cas family. The human HEPL mRNA and protein are selectively expressed in specific primary tissues and cancer cell lines, and HEPL maintains Cas family function in localization to focal adhesions, as well as regulation of FAK activity, focal adhesion integrity, and cell spreading. It has recently been demonstrated that upregulation of HEF1 expression marks and induces metastasis, whereas high endogenous levels of p130Cas are associated with poor prognosis in breast cancer, emphasizing the clinical relevance of Cas proteins. Better understanding of the complete protein family should help inform prediction of cancer incidence and prognosis.  相似文献   
67.
A Novel Clubbed [1,2,3] triazoles with fluorine benzimidazole series of H37Rv strain inhibitors, potentially useful for the treatment of tuberculosis is disclosed on the basis of promising results of preliminary antimicrobial study. Evaluation of the SAR of substitution within these series has followed the identification of a range of compounds. Some of the derivatives are under further evaluation showing better considerable activity compared to rifampin.  相似文献   
68.
69.
Anti-factor VIII (FVIII) inhibitory IgG may arise as alloantibodies to therapeutic FVIII in patients with congenital hemophilia A, or as autoantibodies to endogenous FVIII in individuals with acquired hemophilia. We have described FVIII-hydrolyzing IgG both in hemophilia A patients with anti-FVIII IgG and in acquired hemophilia patients. Here, we compared the properties of proteolytic auto- and allo-antibodies. Rates of FVIII hydrolysis differed significantly between the two groups of antibodies. Proline-phenylalanine-arginine-methylcoumarinamide was a surrogate substrate for FVIII-hydrolyzing autoantibodies. Our data suggest that populations of proteolytic anti-FVIII IgG in acquired hemophilia patients are different from that of inhibitor-positive hemophilia A patients.  相似文献   
70.
Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2−/− mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2−/− mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HVT MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号