首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7561篇
  免费   569篇
  国内免费   14篇
  2023年   51篇
  2022年   157篇
  2021年   286篇
  2020年   169篇
  2019年   265篇
  2018年   293篇
  2017年   248篇
  2016年   292篇
  2015年   398篇
  2014年   443篇
  2013年   580篇
  2012年   556篇
  2011年   558篇
  2010年   396篇
  2009年   313篇
  2008年   331篇
  2007年   362篇
  2006年   264篇
  2005年   241篇
  2004年   200篇
  2003年   184篇
  2002年   170篇
  2001年   135篇
  2000年   155篇
  1999年   118篇
  1998年   67篇
  1997年   46篇
  1996年   47篇
  1995年   44篇
  1994年   24篇
  1993年   30篇
  1992年   49篇
  1991年   30篇
  1990年   29篇
  1989年   38篇
  1988年   31篇
  1987年   21篇
  1986年   27篇
  1985年   23篇
  1984年   42篇
  1983年   34篇
  1982年   36篇
  1981年   18篇
  1980年   39篇
  1979年   32篇
  1978年   37篇
  1977年   29篇
  1976年   21篇
  1974年   22篇
  1973年   19篇
排序方式: 共有8144条查询结果,搜索用时 60 毫秒
41.
There are major changes in circulating luteinizing hormone (LH), prolactin (PRL), estrogens (E), and progesterone (P) in relation to the onset of reproduction, egg laying, incubation, and care of young. LH levels increase in the prelaying period, followed some days later by increased circulating levels of E, P, and PRL. Levels of these hormones tend to stabilize during egg laying with periodic ovulatory cycle changes. Around the onset of incubation PRL levels increase, while LH, E, and P levels fall. During incubation PRL reaches very high levels, falling sharply when incubation is terminated. Stimulatory effects of hypothalamic neurotransmitters, peptides, and ovarian steroids on PRL secretion have been shown. The prelaying increase is dependent on E and P and the high levels of incubation require a functional serotonergic system. The causal relationships and roles of PRL in incubation of gallinaceous birds are, however, still unclear.  相似文献   
42.
Anterior pituitary gland and hypothalamic 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activity was measured in the immature castrated estradiol primed rat to determine if differences in enzyme activity could explain the progesterone induced reduction of bound estradiol nuclear receptors of the anterior pituitary gland but not the hypothalamus. Higher levels of 17 beta-HSD activity were found in the anterior pituitary gland as compared to the hypothalamus. The enzyme activity in the anterior pituitary gland was stimulated by progesterone administered either in combination with estradiol for 4 days or as a single injection following 4 days of estradiol priming. No progesterone effects were found on hypothalamic 17 beta-HSD. Under the experimental conditions used, progesterone administration did not alter uterine 17 beta-HSD. An increase in anterior pituitary gland and uterine 17 beta-HSD was also induced by estrogen administration.  相似文献   
43.
The influence of taurine (in drinking water for 6 weeks) on PGI2 and TXA2 synthesis by some female rat organs was investigated using radioimmunoassay and platelet antiaggregatory bioassay. Taurine 100 and 200 mg/kg/day increased aortic PGI2 release from 0.59 ± 0.04 (control) to 0.85 ± 0.05 and 1.01 ± 0.06 ng/mg, respectively and that by the myometrium from 0.24 ± 0.02 (control) to 0.38 ± 0.01 and 0.50 ± 0.04 ng/mg wet tissue, respectively (P < 0.05, n = 6). It did not affect PGI2 and TXA2 production in the heart or TXA2 in the aorta. Taurine 200 mg/kg depressed uterine TXA2 synthesis from 148.6 ± 9.8 (control) to 85.4 ± 6.8 pg/mg (P < 0.05, n = 6). Furthermore taurine 0.4 and 0.8 mM in vitro stimulated PGI2 released by the myometrial and aortic tissues from pregnant rats. The stimulant effect of taurine on PGI2 may be related to its antioxidant effect whereas its inhibitory effect on uterine TXA2 may result from direction of synthesis towards PGI2. It is concluded that endogenous taurine may participate in regulation of PGs synthesis and that prostanoids may contribute to its known actions. On broad basis, taurine-induced release of PGI2 may prove of potential value in those ailments characterised by deficiency in PGI2 release.  相似文献   
44.
Agrobacterium radiobacter, strain B6 (a strain isolated in this laboratory, which limited the occurrence of damping-off of sugar beet and influenced growth of plants in hot-house and field experiments) was found to produce an acidic exopolysaccharide in a mineral medium with various carbon sources. Hydrolyzates of the polysaccharide contained glucose, galactose, glycerol, succinic acid and pyruvic acid, whose quantitative content varied according to the carbon source used. The polysaccharide isolated from the medium containing glucose exhibited the highest physiological activity. Seeds germinated best and sugar beet roots were found to grow most rapidly in a medium containing 0.2 % (W/W) of the polysaccharide. The roots exposed for 3 d in this medium grew 2.7-fold as compared with non-treated plants. Higher sumbers of microorganisms were detected on the surface of roots treated with the polysaccharide. Growth of roots was also stimulated when immersing the seeds (30 min) in a 0.2 –0.4 % solution of this polysaccharide. After a two-fold treatment the roots were less damaged by the fungusPythium ultimum. Plants from seeds treated with the polysaccharide grew in the field soil more rapidly than the non-treated plants but worse than after bacterization of the seeds byA. radiobacter B6 and were only partially protected against the damping-off of sugar beet.  相似文献   
45.
46.
Strains of Vibrio cholerae, both O1 and non-O1 serovars, were found to attach to the surfaces of live copepods maintained in natural water samples collected from the Chesapeake Bay and Bangladesh environs. The specificity of attachment of V. cholerae to live copepods was confirmed by scanning electron microscopy, which revealed that the oral region and egg sac were the most heavily colonized areas of the copepods. In addition, survival of V. cholerae in water was extended in the presence of live copepods. Attachment of viable V. cholerae cells to copepods killed by exposure to -60 degrees C was not observed. Furthermore, survival of V. cholerae was not as long in the presence of dead copepods as in the live copepod system. A strain of Vibrio parahaemolyticus was also seen to attach to copepod surfaces without effect on survival of the organism in water. The attachment of vibrios to copepods was concluded to be significant since strains of other bacteria, including Pseudomonas sp. and Escherichia coli, did not adhere to live or dead copepods. Attachment of V. cholerae to live copepods is suggested to be an important factor of the ecology of this species in the aquatic environment, as well as in the epidemiology of cholera, for which V. cholerae serovar O1 is the causative agent.  相似文献   
47.
Development of Newcastle disease, after experimental and natural infection with the virulent strain VLT of Newcastle disease virus, and its growth and distribution in some selected tissues as assayed by the enumeration of plaques are reported.  相似文献   
48.
Interactions between crown-gall tumors on the primary pinto bean leaf and the pinto bean seedling (Phaseolus vulgaris L. ‘Pinto‘) were estimated by quantitative measurements of tumor initiation and growth as affected by certain modifications of the host. Effects of the tumors on the host were estimated by measurements of host growth and correlation responses. The presence of crown-gall tumors was found to reduce the growth of the leaf in area but to nearly double the weight of the leaf 9 days after inoculation with Agrobacterium tumefaciens (Smith and Town.) Conn, strain B6. The presence of tumors on only one of the two primary leaves resulted in a decrease in the weight of the leaf without tumors, showing the tumors to be effective mobilization centers. Tumors also delayed the abscission of petiole explants and delayed the growth of the epicotyl bud, both reminiscent of auxin effects. The excision of the cotyledons, the epicotyl bud, or one of the pair of primary leaves at the time of inoculation increased the number of tumors initiated per leaf. Removing the epicotyl bud or one of the primary leaves, or placing a cytokinin on one of the leaves, altered leaf growth but failed to alter tumor growth, indicating that tumor growth is not affected by the changes responsible for the compensatory growth effects induced by these treatments. Tumor growth was shown to be generally correlated with leaf growth from day 2 through 8 after inoculation, suggesting that the factors normally limiting leaf growth in a determinate type leaf are also active in limiting tumor growth. The changes in the plant cell responsible for the enhanced rate of growth seen in crown-gall tumor cells, therefore, appear to occur in regulatory systems other than those normally limiting leaf growth. The regulatory systems that are affected may be identical with those activated in compensatory host growth effects.  相似文献   
49.
Summary The production of granulose (an intracellular reserve polygranule), capsule and exopolysaccharide was investigated in a synthetic medium in which the oxido-reduction level was modified by the addition of acetic or butyric acid. After addition of the acids, granulose synthesis increased from 150 to 300 mg glucose equivalents ·1–1 and capsular synthesis decreased by 25%. Exopolysaccharide production was unchanged under these conditions. A hypothesis that attributes a role to the polymer in the oxido-reduction sequences is discussed.  相似文献   
50.
Abstract: In this study, we have investigated the effect of mivazerol, [3-(1H-imidazol-4-yl)methyl-1]-2-hydroxy-benzamide hydrochloride, a new α2-agonist lacking hypotensive properties and a potential anti-ischemic drug, on the evoked release of norepinephrine, aspartate, and glutamate in tissue preparations from hippocampus, spinal cord T1–T5 section, rostrolateral ventricular medulla, and nucleus tractus solitarii of the brainstem of rat. A simple and efficient in vitro procedure to study pharmacologically the release of norepinephrine and glutamate is described. Tissues were chopped into (0.3 × 0.2 × 0.2 mm3) sections and the resulting minces were used for this study. Exposure to KCl (10–75 mM) for 5 min served as a stimulus for the release response. One, S (for aspartate and for glutamate release), or two such stimuli, S1 and S2 (for norepinephrine release) were conducted. The release of norepinephrine (+150% above baseline) was inhibited in a dose-dependent manner by mivazerol in hippocampus (IC50 = 1.5 × 10?8M), spinal cord (IC50 = 5 × 10?8M), rostrolateral ventricular medulla (IC50 = 10?7M), and nucleus tractus solitarii (IC50 = 7.5 × 10?8M), and by clonidine in hippocampus (IC50 = 5 × 10?8M), spinal cord (IC50 = 4.5 × 10?8M), rostrolateral ventricular medulla (IC50 = 2.5 × 10?7M), and nucleus tractus solitarii (IC50 = 10?7M). This effect was counteracted by the selective α2-antagonists yohimbine and rauwolscine. A significant glutamate and aspartate release response was also induced by KCl (35 mmol/L) in hippocampus (+250 and +135%, respectively) and spinal cord (+120 and +55%, respectively), in vitro. However, neither mivazerol nor clonidine, at doses up to 10 µM, had any significant effect on KCl-induced glutamate release in spinal cord, whereas mivazerol blocked completely the release of both amino acids in hippocampus and only the release of aspartate in spinal cord. On the other hand, clonidine (1 µM) was only effective in reducing by 40% the release of aspartate in hippocampus. These data indicate that (1) inhibition of KCl-induced norepinephrine release by mivazerol is mediated by its action on α2-adrenergic receptors; (2) at concentrations selective for α2-adrenergic receptors, only mivazerol was effective in blocking the KCl-induced glutamate release in hippocampal tissue; and (3) at the same concentrations, both mivazerol and clonidine were unable to inhibit glutamate release in the spinal cord. These data suggest that prevention of hyperadrenergic activity by mivazerol in perioperative patients may be mediated through its effect on the release of norepinephrine and/or the release of glutamate and aspartate in regions of the CNS that are involved in the control of cardiovascular homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号