首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   22篇
  300篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   12篇
  2020年   5篇
  2019年   19篇
  2018年   9篇
  2017年   8篇
  2016年   8篇
  2015年   11篇
  2014年   12篇
  2013年   19篇
  2012年   22篇
  2011年   25篇
  2010年   19篇
  2009年   10篇
  2008年   18篇
  2007年   16篇
  2006年   13篇
  2005年   11篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
21.
All life forms are equipped with rapidly acting, evolutionally conserved components of an innate immune defense system that consists of a group of unique and diverse molecules known as host defense peptides (HDPs). A Systematic and Modular Modification and Deletion (SMMD) approach was followed to analyse the structural requirement of B1CTcu5, a brevinin antibacterial peptide amide identified from the skin secretion of frog Clinotarsus curtipes, India, to show antibacterial activity and to explore the active core region. Seventeen SMMD-B1CTcu5 analogs were designed and synthesised by C and N-terminal amino acid substitution or deletion. Enhancement in cationicity by N-terminal Lys/Arg substitution or hydrophobicity by Trp substitution produced no drastic change in bactericidal nature against selected bacterial strains except S. aureus. But the sequential removal of N-terminal amino acids had a negative effect on bactericidal potency. Analog B1CTcu5-LIAG obtained by the removal of four N-terminal amino acids displayed bactericidal effect comparable to, or in excess of, the parent peptide with reduced hemolytic character. Its higher activity was well correlated with the improved inner membrane permeabilisation capacity. This region may act as the active core of B1CTcu5. Presence of C-terminal disulphide bond was not a necessary condition to display antibacterial activity but helped to promote hemolytic nature. Removal of the C-terminal rana box region drastically reduced antibacterial and hemolytic activity of the peptide, showing that this region is important for membrane targeting. The bactericidal potency of the D-peptide (DB1CTcu5) helped to rule out the stereospecific interaction with the bacterial membrane. Our data suggests that both the C and N-terminal regions are necessary for bactericidal activity, even though the active core region is located near the N-terminal of B1CTcu5. A judicious modification at the N-terminal region may produce a short SMMD analog with enhanced bactericidal activity and low toxicity against eukaryotic cells.  相似文献   
22.
23.
During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG cells are only partially deficient in chemotaxis, whereas rasC/rasG cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG, rasC, and rasC/rasG cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG and rasC/rasG cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG and rasC/rasG cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.The Ras subfamily proteins are monomeric GTPases that act as molecular switches, cycling between an active GTP-bound and an inactive GDP-bound state (17). Activation is controlled by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP, and inactivation regulated by GTPase-activating proteins (GAPs) that stimulate the hydrolysis of bound GTP to GDP (17). Activated Ras proteins stimulate numerous downstream signaling pathways that regulate a wide range of cellular processes, including proliferation, cytoskeletal function, chemotaxis, and differentiation (4). The complexity of this regulation has been emphasized by the discovery of the presence of a large number of Ras subfamily homologues in metazoan organisms (19) and elucidation of the roles played by each protein remains a formidable challenge. An important approach to this problem is an analysis of Ras protein function in organisms amenable to genetic analysis.The Dictyostelium genome encodes 14 Ras subfamily members, an unusually large number for such a relatively simple organism (6, 25). Six of these have been partially characterized and have been shown to be involved in a wide variety of processes, including cell movement, polarity, growth, cytokinesis, chemotaxis, macropinocytosis, and multicellular development (5, 15, 23, 25). They exhibit considerable functional specificity, and even the two highly related proteins, RasD and RasG, perform different functions (23, 26). RasC and RasG are the best characterized of these proteins, and both are activated in response to cyclic AMP (cAMP) during aggregation (11). Although both proteins are involved in aggregation, signaling through RasC is more important for the regulation of the cAMP relay, whereas signaling through RasG is more important for cAMP-dependent chemotaxis, but there is some overlap of function (2, 3). Disruption of both the rasC and rasG genes results in a total loss of cAMP-mediated signaling, suggesting that all cAMP signal transduction in early development is partitioned between pathways that use either RasC or RasG (2, 3).In addition to their roles in early development, both RasG and RasC have vegetative cell functions. Cells with a disrupted rasG gene were found to exhibit a reduced growth rate, which was most apparent when cells were grown in suspension, and were multinucleate, indicating a defect in cytokinesis (13, 23). In addition, rasG cells exhibited reduced motility and polarity and an altered actin distribution. Vegetative rasC cells had a less pronounced phenotype: changes in actin distribution and motility but normal growth and cytokinesis (16). Given that there was evidence for some overlap of function between RasG and RasC during early development, it was important to determine the extent of their functional overlap in vegetative cells.In the present study, we have compared the potential overlap of RasG and RasC requirements for vegetative cell function in the recently generated isogenic rasC, rasG, and rasC/rasG strains (2, 3). In addition, the availability of stable rasG and rasC/rasG strains has enabled us to determine to what extent RasD, a protein that is highly related to RasG but not present in wild-type vegetative cells, can substitute for loss of function of RasG.  相似文献   
24.
Most tumors arise from epithelial tissues, such as mammary glands and lobules, and their initiation is associated with the disruption of a finely defined epithelial architecture. Progression from intraductal to invasive tumors is related to genetic mutations that occur at a subcellular level but manifest themselves as functional and morphological changes at the cellular and tissue scales, respectively. Elevated proliferation and loss of epithelial polarization are the two most noticeable changes in cell phenotypes during this process. As a result, many three-dimensional cultures of tumorigenic clones show highly aberrant morphologies when compared to regular epithelial monolayers enclosing the hollow lumen (acini). In order to shed light on phenotypic changes associated with tumor cells, we applied the bio-mechanical IBCell model of normal epithelial morphogenesis quantitatively matched to data acquired from the non-tumorigenic human mammary cell line, MCF10A. We then used a high-throughput simulation study to reveal how modifications in model parameters influence changes in the simulated architecture. Three parameters have been considered in our study, which define cell sensitivity to proliferative, apoptotic and cell-ECM adhesive cues. By mapping experimental morphologies of four MCF10A-derived cell lines carrying different oncogenic mutations onto the model parameter space, we identified changes in cellular processes potentially underlying structural modifications of these mutants. As a case study, we focused on MCF10A cells expressing an oncogenic mutant HER2-YVMA to quantitatively assess changes in cell doubling time, cell apoptotic rate, and cell sensitivity to ECM accumulation when compared to the parental non-tumorigenic cell line. By mapping in vitro mutant morphologies onto in silico ones we have generated a means of linking the morphological and molecular scales via computational modeling. Thus, IBCell in combination with 3D acini cultures can form a computational/experimental platform for suggesting the relationship between the histopathology of neoplastic lesions and their underlying molecular defects.  相似文献   
25.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
26.
Transplantation of neural-like cells is considered as a promising therapeutic strategy developed for neurodegenerative disease in particular for ischemic stroke. Since cell survival is a major concern following cell implantation, a number of studies have underlined the protective effects of preconditioning with hypoxia or hypoxia mimetic pharmacological agents such as deferoxamine (DFO), induced by activation of hypoxia inducible factor-1 (HIF-1) and its target genes. The present study has investigated the effects of DFO preconditioning on some factors involved in cell survival, angiogenesis, and neurogenesis of neural-like cells derived from human Wharton’s jelly mesenchymal stem cells (HWJ-MSCs) in presence of hydrogen peroxide (H2O2). HWJ-MSCs were differentiated toward neural-like cells for 14 days and neural cell markers were identified using immunocytochemistry. HWJ-MSC-derived neural-like cells were then treated with 100 µM DFO, as a known hypoxia mimetic agent for 48 h. mRNA and protein expression of HIF-1 target genes including brain-derived neurotrophic factors (BDNF) and vascular endothelial growth factor (VEGF) significantly increased using RT-PCR and Western blotting which were reversed by HIF-1α inhibitor, while, gene expression of Akt-1, Bcl-2, and Bax did not change significantly but pAkt-1 was up-regulated as compared to poor DFO group. However, addition of H2O2 to DFO-treated cells resulted in higher resistance to H2O2-induced cell death. Western blotting analysis also showed significant up-regulation of HIF-1α, BDNF, VEGF, and pAkt-1, and decrease of Bax/Bcl-2 ratio as compared to poor DFO. These results may suggest that DFO preconditioning of HWJ-MSC-derived neural-like cells improves their tolerance and therapeutic potential and might be considered as a valuable strategy to improve cell therapy.  相似文献   
27.
As it is important to understand how protein conformational changes affect the separation performance in ion exchange chromatography (IEC), we investigated two model systems, unfolded proteins (lysozyme and bovine serum albumin) with urea and dithiothreitol, and PEGylated proteins (lysozyme attached with polyethyleneglycol molecular weight 5000). Linear gradient elution IEC experiments were carried out and the data were analysed by our model previously presented in order to obtain the binding site value B and the peak salt concentration I(R). Unfolded proteins (bovine serum albumin and lysozyme) with urea and dithiothreitol showed weaker retention and larger binding site values compared with the values for native proteins. Multiple PEGylated lysozyme peaks were separated, and eluted earlier than the native peak appeared. There is a good correlation between B and I(R) for PEGylated lysozymes.  相似文献   
28.
Molecular Biology Reports - Adipose tissue (AT) is a passive reservoir for energy storage and an active endocrine organ responsible for synthesizing bioactive molecules called...  相似文献   
29.
30.
To find genes and proteins that collaborate with BRCA1 or BRCA2 in the pathogenesis of breast cancer, we used an informatics approach and found a candidate BRCA interactor, KIAA0101, to function like BRCA1 in exerting a powerful control over centrosome number. The effect of KIAA0101 on centrosomes is likely direct, as its depletion does not affect the cell cycle, KIAA0101 localizes to regions coincident with the centrosomes, and KIAA0101 binds to BRCA1. We analyzed whether KIAA0101 protein is overexpressed in breast cancer tumor samples in tissue microarrays, and we found that overexpression of KIAA0101 correlated with positive Ki67 staining, a biomarker associated with increased disease severity. Furthermore, overexpression of the KIAA0101 gene in breast tumors was found to be associated with significantly decreased survival time. This study identifies KIAA0101 as a protein important for breast tumorigenesis, and as this factor has been reported as a UV repair factor, it may link the UV damage response to centrosome control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号