首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   5篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   10篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1997年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
11.
12.
13.
BACKGROUND: Earlier detection of transformed cells using target-specific imaging techniques holds great promise. We have developed TAB 004, a monoclonal antibody highly specific to a protein sequence accessible in the tumor form of MUC1 (tMUC1). We present data assessing both the specificity and sensitivity of TAB 004 in vitro and in genetically engineered mice in vivo. METHODS: Polyoma Middle T Antigen mice were crossed to the human MUC1.Tg mice to generate MMT mice. In MMT mice, mammary gland hyperplasia is observed between 6 and 10 weeks of age that progresses to ductal carcinoma in situ by 12 to 14 weeks and adenocarcinoma by 18 to 24 weeks. Approximately 40% of these mice develop metastasis to the lung and other organs with a tumor evolution that closely mimics human breast cancer progression. Tumor progression was monitored in MMT mice (from ages 8 to 22 weeks) by in vivo imaging following retro-orbital injections of the TAB 004 conjugated to indocyanine green (TAB-ICG). At euthanasia, mammary gland tumors and normal epithelial tissues were collected for further analyses. RESULTS: In vivo imaging following TAB-ICG injection permitted significantly earlier detection of tumors compared with physical examination. Furthermore, TAB-ICG administration in MMT mice enabled the detection of lung metastases while sparing recognition of normal epithelia. CONCLUSIONS: The data highlight the specificity and the sensitivity of the TAB 004 antibody in differentiating normal versus tumor form of MUC1 and its utility as a targeted imaging agent for early detection, tumor monitoring response, as well as potential clinical use for targeted drug delivery.  相似文献   
14.
New pre-concentration technique, triple phase suspended droplet microextraction (SD-LPME) and liquid chromatography-photodiode array detection was applied to determine ecstasy, MDMA (3,4-methylendioxy-N-methylamphetamine) in hair samples. In this research MDMA in hair was digested and after treatment extracted. The effective parameters were investigated and method was evaluated. Under the optimal conditions, the MDMA was enriched by factor 98.11. Linearity (r = 0.9921), was obtained in the range of 10–15,000 ng mL?1 and detection limit was 0.1 ng mL?1.  相似文献   
15.
The natural triterpene betulinic acid and its analogues (betulinic aldehyde, lupeol, betulin, methyl betulinate and betulinic acid amide) caused concentration-dependent alterations of erythrocyte membrane shape towards stomatocytes or echinocytes according to their hydrogen bonding properties. Thus, the analogues with a functional group having a capacity of donating a hydrogen bond (COOH, CH(2)OH, CONH(2)) caused formation of echinocytes, whereas those lacking this ability (CH(3), CHO, COOCH(3)) induced formation of stomatocytes. Both kinds of erythrocyte alterations were prohibitive with respect to Plasmodium falciparum invasion and growth; all compounds were inhibitory with IC(50) values in the range 7-28 microM, and the growth inhibition correlated well with the extent of membrane curvature changes assessed by transmission electron microscopy. Erythrocytes pre-loaded with betulinic acid or its analogues and extensively washed in order to remove excess of the chemicals could not serve as hosts for P. falciparum parasites. Betulinic acid and congeners can be responsible for in vitro antiplasmodial activity of plant extracts, as shown for Zataria multiflora Boiss. (Labiatae) and Zizyphus vulgaris Lam. (Rhamnaceae). The activity is evidently due to the incorporation of the compounds into the lipid bilayer of erythrocytes, and may be caused by modifications of cholesterol-rich membrane rafts, recently shown to play an important role in parasite vacuolization. The established link between erythrocyte membrane modifications and antiplasmodial activity may provide a novel target for potential antimalarial drugs.  相似文献   
16.
We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100–500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix “cartilage dust (CD)”. Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.  相似文献   
17.
Abstract

To study structure-activity relationship of antimicrobial peptides and to design novel antimicrobial peptides with selectivity for bacterial cells, we have performed molecular dynamics simulations of the interaction of Piscidin (Pis1) and its two analogues (Pis1-AA and Pis1-PG) with dipalmitoylphosphatidylcholine (DPPC) bilayer through 45 ns. Our results inform us of the detailed location and orientation of the peptide with respect to the bilayer as well as provide about hydrogen-bond-formation patterns and electrostatics interactions. Simulations show that Pis1 and Pis-AA form the most hydrogen bonds and Pis-PG forms the fewest hydrogen bonds with lipid. Thus, Pis1 and Pis-AA should have stronger interactions with the lipid head group when compared to Pis-PG. Experimental studies have shown that Pis1 and Pis1-AA have a high antimicrobial and hemolytic activities, and Pis1-PG has low hemolytic activity while keeps potent antimicrobial activity. Our results complement the previous experimental studies. According to our MD results and previous experimental studies, Pis1 and Pis1-AA are more effective at the zwitterionic bilayer comparing Pis1-PG. These properties of Pis1-PG could be accordance with its low hemolytic activities.  相似文献   
18.
Abstract

In this study, the interaction of Holmium (Ho) complex including 2, 9-dimethyl-1,10-phenanthroline, also called Neocuproine (Neo), [Ho(Neo)2Cl3.H2O], as fluorescence probe with fish-salmon DNA (FS-DNA) is studied during experimental investigations. Multi-spectroscopic methods are utilized to determine the affinity binding constants (Kb) of complex–FS-DNA. It is found that fluorescence of Ho complex is strongly quenched by the FS-DNA through a static quenching procedure. Under optimal conditions in Tris(trishydroxymethyl-aminomethane)–HCl buffer at 25?°C with pH?≈?7.2, intrinsic binding constant Kb of Ho complex is 6.12?±?0.04?×?105 M?1. Also, the binding site number and Stern–Volmer quenching constant are calculated. There are different approaches, including iodide quenching assay, salt effect and thermodynamical assessment to determine the features of the binding mode between Ho complex and FS-DNA. Also, the parent and starch and lipid nanoencapsulated Ho complex, as potent antitumor candidates, were synthesized. The main structure of Ho complex is maintained after encapsulation using starch and lipid nanoparticles. 3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method was used to assess the anticancer properties of Ho complex and its encapsulated forms on human cancer cell lines of human lung carcinoma cell line and breast cancer cell line. In conclusion, these compounds could be considered as new antitumor candidates.

Communicated by Ramaswamy H. Sarma  相似文献   
19.
In this study, homology modeling, molecular docking and molecular dynamics simulation were performed to explore structural features and binding mechanism of some inhibitors of chemokine receptor type 5 (CCR5), and to construct a model for designing new CCR5 inhibitors for preventing HIV attachment to the host cell. A homology modeling procedure was employed to construct a 3D model of CCR5. For this procedure, the X-ray crystal structure of bovine rhodopsin (1F88A) at 2.80? resolution was used as template. After inserting the constructed model into a hydrated lipid bilayer, a 20ns molecular dynamics (MD) simulation was performed on the whole system. After reaching the equilibrium, twenty-four CCR5 inhibitors were docked in the active site of the obtained model. The binding models of the investigated antagonists indicate the mechanism of binding of the studied compounds to the CCR5 obviously. Moreover, 3D pictures of inhibitor-protein complex provided precious data regarding the binding orientation of each antagonist into the active site of this protein. One additional 20 ns MD simulation was performed on the initial structure of the CCR5-ligand 21 complex, resulted from the previous docking calculations, embedded in a hydrated POPE bilayer to explore the effects of the presence of lipid bilayer in the vicinity of CCR5-ligand complex. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号