首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   4篇
  105篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   11篇
  2010年   3篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1998年   2篇
  1993年   2篇
  1989年   1篇
  1986年   2篇
  1983年   1篇
排序方式: 共有105条查询结果,搜索用时 0 毫秒
31.
Restricted fragment length polymorphism (RFLP) was used in analyses on the typing and heterogeneity, typeability and polymorphism of the 16S rRNA, fliC and fimH genes in Salmonella Typhimurium isolates of varied origin. The digestion of PCR products with restriction enzymes EcoRV, ClaI, HaeIII and ScaI (fliC genes), HincII, ClaI, EcoRV and MluI (fimH genes) and EcoRI, SmaI and HaeIII (16S rRNA genes) generated two to four bands of ranging in size from 100 to 1,104 bp. Of all the restriction profiles obtained, only the ClaI profile for fimH could be used to classify Salmonella Typhimurium isolates into different groups. According to this profile, pattern A with uncut fimH was observed in eight isolates (36.36 %) and pattern B with 755- and 253-bp bands was observed in 14 isolates (63.63 %). No pattern was allotted for a special region or source. These results demonstrate that PCR-RFLP based on these genes showed good typeability but low discriminatory power. Moreover, the highly conserved nature of fliC, fimH and 16S rRNA illustrated in our study suggests the importance of these genes as immunization and diagnostic factors in Salmonella Typhimurium. Simultaneously, our results also illustrate the potential of ClaI-based fimH analysis as a marker for the sub-serotype level differentiation of Salmonella Typhimurium isolates.  相似文献   
32.
The aim of this investigation was to develop and evaluate freeze-dried mannosylated liposomes for the targeted delivery of selenium. Dipalmitoylphosphatidylcholine, distearoylphosphatidylglycerol, and cholesterol were dissolved in a chloroform and methanol mixture and allowed to form a thin film within a rotatory evaporator. This thin film was hydrated with a sodium selenite (5.8 μM) solution to form multilamellar vesicles and homogenized under high pressure to yield unilamellar nanoliposomes. Se-loaded nanoliposomes were mannosylated by 0.1% w/v mannosamine (Man-Lip-Se) prior to being lyophilized. Mannosamine concentration was optimized with cellular uptake studies in M receptor expressing cells. Non-lyophilized and lyophilized Man-Lip-Se were characterized for size, zeta potential, and entrapment efficiency. The influence of liposomal composition on the characteristics of Man-Lip-Se were evaluated using acidic and basic medium for 24 h. Thermal analysis and powder X-ray diffraction were used to determine the interaction of components within the Man-Lip-Se. The size, zeta potential and entrapment efficiency of the optimum Man-Lip-Se were observed to be 158 ± 28.9 nm, 33.21 ± 0.89 mV, and 77.27 ± 2.34%, respectively. An in vitro Se release of 70–75% up to 24 h in PBS pH 6.8 and <8% Se release in acidic media (0.1 N HCl) in 1 h was observed. The Man-Lip-Se were found to withstand gastric-like environments and showed sustained release. Stable freeze-dried Man-Lip-Se were successfully formulated with a size of <200 nm, ∼75% entrapment, and achieved controlled release of Se with stability under acidic media, which may be of importance in the targeted delivery of Se to the immune system.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-013-9988-3) contains supplementary material, which is available to authorized users.Key words: mannosylation, nanoliposome, selenium, thermal properties  相似文献   
33.
34.
Thioredoxin peroxidase (TPx) has been reported to dominate the defense against H(2)O(2), other hydroperoxides, and peroxynitrite at the expense of thioredoxin (Trx) B and C in Mycobacterium tuberculosis (Mt). By homology, the enzyme has been classified as an atypical 2-C-peroxiredoxin (Prx), with Cys(60) as the "peroxidatic" cysteine (C(P)) forming a complex catalytic center with Cys(93) as the "resolving" cysteine (C(R)). Site-directed mutagenesis confirms Cys(60) to be C(P) and Cys(80) to be catalytically irrelevant. Replacing Cys(93) with serine leads to fast inactivation as seen by conventional activity determination, which is associated with oxidation of Cys(60) to a sulfinic acid derivative. However, in comparative stopped-flow analysis, WT-MtTPx and MtTPx C93S reduce peroxynitrite and react with TrxB and -C similarly fast. Reduction of pre-oxidized WT-MtTPx and MtTPx C93S by MtTrxB is demonstrated by monitoring the redox-dependent tryptophan fluorescence of MtTrxB. Furthermore, MtTPx C93S remains stable for 10 min at a morpholinosydnonimine hydrochloride-generated low flux of peroxynitrite and excess MtTrxB in a dihydrorhodamine oxidation model. Liquid chromatography-tandem mass spectrometry analysis revealed disulfide bridges between Cys(60) and Cys(93) and between Cys(60) and Cys(80) in oxidized WT-MtTPx. Reaction of pre-oxidized WT-MtTPx and MtTPx C93S with MtTrxB C34S or MtTrxC C40S yielded dead-end intermediates in which the Trx mutants are preferentially linked via disulfide bonds to Cys(60) and never to Cys(93) of the TPx. It is concluded that neither Cys(80) nor Cys(93) is required for the catalytic cycle of the peroxidase. Instead, MtTPx can react as a 1-C-Prx with Cys(60) being the site of attack for both the oxidizing and the reducing substrate. The role of Cys(93) is likely to conserve the oxidation equivalents of the sulfenic acid state of C(P) as a disulfide bond to prevent overoxidation of Cys(60) under a restricted supply of reducing substrate.  相似文献   
35.
l-Alanine dehydrogenase from Mycobacterium tuberculosis catalyzes the NADH-dependent reversible conversion of pyruvate and ammonia to l-alanine. Expression of the gene coding for this enzyme is up-regulated in the persistent phase of the organism, and alanine dehydrogenase is therefore a potential target for pathogen control by antibacterial compounds. We have determined the crystal structures of the apo- and holo-forms of the enzyme to 2.3 and 2.0 Å resolution, respectively. The enzyme forms a hexamer of identical subunits, with the NAD-binding domains building up the core of the molecule and the substrate-binding domains located at the apical positions of the hexamer. Coenzyme binding stabilizes a closed conformation where the substrate-binding domains are rotated by about 16° toward the dinucleotide-binding domains, compared to the open structure of the apo-enzyme. In the structure of the abortive ternary complex with NAD+ and pyruvate, the substrates are suitably positioned for hydride transfer between the nicotinamide ring and the C2 carbon atom of the substrate. The approach of the nucleophiles water and ammonia to pyruvate or the reaction intermediate iminopyruvate, respectively, is, however, only possible through conformational changes that make the substrate binding site more accessible. The crystal structures identified the conserved active-site residues His96 and Asp270 as potential acid/base catalysts in the reaction. Amino acid replacements of these residues by site-directed mutagenesis led to inactive mutants, further emphasizing their essential roles in the enzymatic reaction mechanism.  相似文献   
36.
37.
Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction.  相似文献   
38.
Mycobacterium tuberculosis evades host immune responses by colonizing macrophages. Intraphagosomal M. tuberculosis is exposed to environmental stresses such as reactive oxygen and nitrogen intermediates as well as acid shock and inorganic phosphate (Pi) depletion. Experimental evidence suggests that expression levels of mycobacterial protein PstS3 (Rv0928) are significantly increased when M. tuberculosis bacilli are exposed to Pi starvation. Hence, PstS3 may be important for survival of Mtb in conditions where there is limited supply of Pi. We report here the structure of PstS3 from M. tuberculosis at 2.3‐Å resolution. The protein presents a structure typical for ABC phosphate transfer receptors. Comparison with its cognate receptor PstS1 showed a different pattern distribution of surface charges in proximity to the Pi recognition site, suggesting complementary roles of the two proteins in Pi uptake. Proteins 2014; 82:2268–2274. © 2014 Wiley Periodicals, Inc.  相似文献   
39.
Lipid inclusions play an important role in several pathological processes. Intracellular bacterial pathogens, such as members of the Mycobacterium and Chlamydia species are able to trigger the formation of lipid-laden foamy macrophages. Lipid droplet accumulation in the host constitutes a reservoir used by the bacilli for long-term persistence. Viruses need lipid droplets as assembly platform. We present the current knowledge about structural, functional and regulatory aspects of lipid inclusions.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号