首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   11篇
  2021年   2篇
  2018年   2篇
  2017年   4篇
  2015年   6篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   4篇
  1972年   1篇
  1968年   1篇
排序方式: 共有109条查询结果,搜索用时 203 毫秒
71.
Single-copy nuclear DNAs (scnDNAs) of eight species of arvicoline and six species of murine rodents were compared using DNA-DNA hybridization. The branching pattern derived from the DNA comparisons is congruent with the fossil evidence and supported by comparative biochemical, chromosomal, and morphological studies. The recently improved fossil record for these lineages provides seven approximate divergence dates, which were used to calibrate the DNA-hybridization data. The average rate of scnDNA divergence was estimated as 2.5%/Myr. This is approximately 10 times the rate in the hominoid primates. These results agree with previous reports of accelerated DNA evolution in muroid rodents and extend the DNA-DNA hybridization data set of Brownell.   相似文献   
72.
Oxidative decarboxylation and transamination of 1-14C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso[1-14C]valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and [1-14C]KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM [1-14C]KIV and alpha-ketoiso[1-14C]caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using [1-14C]leucine and [1-14C]valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of [1-14C]leucine or [1-14C]valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized. Further addition of alpha-ketoglutarate resulted in a significant increase in the rate of labeled leucine or valine transamination, but again most of the labeled keto acid product was oxidized. Thus, catabolism of branched chain amino acids will be favored by a high concentration of mitochondrial alpha-ketoglutarate and low intramitochondrial glutamate.  相似文献   
73.
Carbohydrates have been suggested to account for some IgE cross- reactions between various plant, insect, and mollusk extracts, while some IgG antibodies have been successfully raised against plant glycoproteins. A rat monoclonal antibody raised against elderberry abscission tissue (YZ1/2.23) and rabbit polyclonal antiserum against horseradish peroxidase were screened for reactivity in enzyme-linked immunosorbent assay against a range of plant glycoproteins and extracts as well as neoglycoproteins, bee venom phospholipase, and several animal glycoproteins. Of the oligosaccharides tested, Man3XylFucGlcNAc2(MMXF3) derived from horseradish peroxidase was the most potent inhibitor of the reactivity of both YZ1/2.23 and anti- horseradish peroxidase to native horseradish peroxidase glycoprotein. The reactivity of YZ1/2. 23 and anti-horseradish peroxidase against Sophora japonica lectin was most inhibited by a neoglycoconjugate of bromelain glycopeptide cross-linked to bovine serum albumin, while the defucosylated form of this conjugate was inactive as an inhibitor. A wide range of plant extracts was found to react against YZ1/2.23 and anti-horseradish peroxidase, with particularly high reactivities recorded for grass pollen and nut extracts. All these reactivities were inhibitable with the bromelain glycopeptide/bovine serum albumin conjugate. Bee venom phospholipase and whole bee venom reacted weakly with YZ1/2.23 but more strongly with anti-horseradish peroxidase in a manner inhibitable with the bromelain glycopeptide/bovine serum albumin conjugate, while hemocyanin from Helix pomatia reacted poorly with YZ1/2.23 but did react with anti-horseradish peroxidase. It is concluded that the alpha1, 3-fucose residue linked to the chitobiose core of plant glycoproteins is the most important residue in the epitope recognized by the two antibodies studied, but that the polyclonal anti-horseradish peroxidase antiserum also contains antibody populations that recognize the xylose linked to the core mannose of many plant and gastropod N-linked oligosaccharides.   相似文献   
74.
Heparan sulfate (HS) glycosaminoglycans are essential modulators of fibroblast growth factor (FGF) activity both in vivo and in vitro, and appear to act by cross-linking particular forms of FGF to appropriate FGF receptors. We have recently isolated and characterized two separate HS pools derived from immortalized embryonic day 10 mouse neuroepithelial 2.3D cells: one from cells in log growth phase, which greatly potentiates the activity of FGF-2, and the other from cells undergoing contact-inhibition and differentiation, which preferentially activates FGF-1. These two pools of HS have very similar functional activities to those species isolated from primary neuroepithelial cells at corresponding stages of active proliferation or differentiation. We present here a structural comparison between these cell line HS species to establish the nature of the changes that occur in the biosynthesis of HS. A combination of chemical and enzymatic cleavage, low pressure chromatography and strong anion-exchange HPLC were used to generate full chain models of each species. Overall, the HS pools synthesized in the dividing cell line pools possessed less complex sulfation than those derived from more differentiated, growth arrested cells.   相似文献   
75.
An RNA folding method capable of identifying pseudoknots and base triples   总被引:7,自引:1,他引:6  
MOTIVATION: Recently, we described a Maximum Weighted Matching (MWM) method for RNA structure prediction. The MWM method is capable of detecting pseudoknots and other tertiary base-pairing interactions in a computationally efficient manner (Cary and Stormo, Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology, pp. 75-80, 1995). Here we report on the results of our efforts to improve the MWM method's predictive accuracy, and show how the method can be extended to detect base interactions formerly inaccessible to automated RNA modeling techniques. RESULTS: Improved performance in MWM structure prediction was achieved in two ways. First, new ways of calculating base pair likelihoods have been developed. These allow experimental data and combined statistical and thermodynamic information to be used by the program. Second, accuracy was improved by developing techniques for filtering out spurious base pairs predicted by the MWM program. We also demonstrate here a means by which the MWM folding method may be used to detect the presence of base triples in RNAs. AVAILABILITY: http://www.cshl.org/mzhanglab/tabaska/j axpage. html CONTACT: tabaska@cshl.org   相似文献   
76.
77.
Both original and colonizer populations of Drosophila buzzatii have been analyzed for mtDNA restriction polymorphisms. Most of the mtDNA nucleotide variation in original populations of NW Argentina can be explained by intrapopulation diversity and only a small fraction can be accounted for by between-population diversity. Similar results are obtained using either the estimated number of nucleotide substitutions per site or considering each restriction site as a locus. Colonizer populations of the Iberian Peninsula are monomorphic and show only the most common haplotype from the original populations. Under the infinite island model and assuming that populations are in equilibrium, fixation indices indicate enough gene flow to explain why the populations are not structured. Yet, the possibility exists that populations have not reached an equilibrium after a founder event at the end of the last Pleistocene glaciation. Tajima's test suggests that directional selection and/or a recent bottleneck could explain the present mtDNA differentiation. Considering the significant population structure found for the chromosomal and some allozyme polymorphisms, the among- population uniformity for mtDNA variability argues in favor of the chromosomal and some allozyme polymorphisms being adaptive.   相似文献   
78.
Polyclonal antibodies were elicited against seven of the 33 different proteins of the large subunit of the chloroplast ribosome from Chlamydomonas reinhardtii. Three of these proteins are synthesized in the chloroplast and four are made in the cytoplasm and imported. In western blots, six of the seven antisera are monospecific for their respective large subunit ribosomal proteins, and none of these antisera cross-reacted with any chloroplast small subunit proteins from C. reinhardtii. Antisera to the three chloroplast-synthesized ribosomal proteins cross-reacted with specific Escherichia coli large subunit proteins of comparable charge and molecular weight. Only one of the four antisera to the chloroplast ribosomal proteins synthesized in the cytoplasm cross-reacted with an E. coli large subunit protein. None of the antisera cross-reacted with any E. coli small subunit proteins. On the assumption of a procaryotic, endosymbiotic origin for the chloroplast, those chloroplast ribosomal proteins still synthesized within the organelle appear to have retained more antigenic sites in common with E. coli ribosomal proteins than have those which are now the products of cytoplasmic protein synthesis. Antisera to this cytoplasmically synthesized group of chloroplast ribosomal proteins did not recognize any antigenic sites among C. reinhardtii cytoplasmic ribosomal proteins, suggesting that the genes for the cytoplasmically synthesized chloroplast ribosomal proteins either are not derived from the cytoplasmic ribosomal protein genes or have evolved to a point where no antigenic similarities remain.   相似文献   
79.
We studied three Russian cosmonauts to better understand how long-term exposure to microgravity affects autonomic cardiovascular control. We recorded the electrocardiogram, finger photoplethysmographic pressure, and respiratory flow before, during, and after two 9-mo missions to the Russian space station Mir. Measurements were made during four modes of breathing: 1) uncontrolled spontaneous breathing; 2) stepwise breathing at six different frequencies; 3) fixed-frequency breathing; and 4) random-frequency breathing. R wave-to-R wave (R-R) interval standard deviations decreased in all and respiratory frequency R-R interval spectral power decreased in two cosmonauts in space. Two weeks after the cosmonauts returned to Earth, R-R interval spectral power was decreased, and systolic pressure spectral power was increased in all. The transfer function between systolic pressures and R-R intervals was reduced in-flight, was reduced further the day after landing, and had not returned to preflight levels by 14 days after landing. Our results suggest that long-duration spaceflight reduces vagal-cardiac nerve traffic and decreases vagal baroreflex gain and that these changes may persist as long as 2 wk after return to Earth.  相似文献   
80.
Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1’s effects on liver by comparing wild-type controls, heterozygous igf1+/?, and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号