首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   11篇
  2021年   2篇
  2018年   2篇
  2017年   4篇
  2015年   6篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   4篇
  1972年   1篇
  1968年   1篇
排序方式: 共有109条查询结果,搜索用时 125 毫秒
101.
102.
Flavoparmelia caperata (L.) Hale is medicinally very important and possesses antifungal and antibacterial activities. F. caperata is the only species found in India. Inter simple sequence repeat (ISSR) and Directed amplification of minisatellite DNA (DAMD) methods were used to analyze the genetic variability within F. caperata from the Western Himalayan region of India. Eleven ISSR and 10 DAMD primers produced 139 and 117 polymorphic bands, and detected 91.44 and 82.34 % polymorphisms, respectively. Cumulative band data generated for ISSR and DAMD markers resulted in 86.86 % polymorphism across all the accessions of F. caperata. The average Polymorphic information content (PIC) value obtained with ISSR, DAMD, and cumulative band data were 0.28, 0.27, and 0.27, respectively. The clustering of the F. caperata accessions in the UPGMA dendrogram showed that these accessions are intermingled with each other in different subclusters irrespective of their geographical affiliations. The pattern of genetic variations within F. caperata accessions could be due to free exchange of spores that might have taken place among these accessions in the wild. ISSR and DAMD markers efficiently and reliably resulted in discrete banding patterns and polymorphic profiles. These markers despite targeting different regions of genome, revealed almost similar levels of polymorphism across all the accessions. The wide range of genetic distance and high level of polymorphism detected by ISSR and DAMD reflected a high genetic variability among the different accessions of F. caperata.  相似文献   
103.
104.
In the present study, molecular (DAMD and ISSR) and chemical (α and β-asarone contents) markers were used to characterize the A. calamus genotypes procured from different parts of India. The cumulative analysis carried out for both DAMD and ISSR markers revealed 24.71 % polymorphism across all genotypes of A. calamus. The clustering patterns of the genotypes in the UPGMA tree showed that the genotypes are diverse, and did not show any specific correlation with their geographical provenances, reflecting the low level of genetic diversity and a high genetic differentiation among the genotypes from the same localities. All the 27 genotypes of A. calamus were also analyzed for α and β-asarone contents, and percentage of essential oil. The genotype (Ac13) from Kullu (Himachal Pradesh) showed maximum (9.5 %) percentage of oil, whereas corresponding minimum (2.8 %) was obtained from the genotypes from Pangthang (Sikkim). Similarly, the highest α and β-asarone contents (16.82 % and 92.12 %) were obtained from genotypes from Renuka (Himachal Pradesh) and Udhampur (Jammu & Kashmir), while lowest α and β-asarone contents (0.83 % and 65.96 %) resulted from Auranwa (Uttar Pradesh) and Pangthang (Sikkim) genotypes, respectively. A. calamus harbours tremendous economic value, and it is therefore, important to identify the genotypes with low α and β-asarone contents for its commercial utilization. Further, this study will help in evaluation and documentation of a large number of diverse genotypes for their value traits.  相似文献   
105.
106.
Murraya koenigii (L.) Spreng (Curry leaf) is a commercially important medicinal plant in South Asia, containing therapeutically valuable carbazole alkaloids (CAs). Thus, the quantitative evaluation of these compounds from different climatic zones of India are an important aspect for quality assessment and economic isolation of targeted compounds from the plant. In this study, quantitative estimation of CAs among 34 Indian natural populations of M. koenigii was assessed using UPLC/MS/MS. The collected populations represent the humid subtropical, tropical wet & dry, tropical wet, semi-arid, arid, and montane climatic zones of India. A total of 11 CAs viz. koenine-I, murrayamine A, koenigine, koenimbidine, koenimbine, O-methylmurrayamine A, girinimbine, mahanine, 8,8’’-biskoenigine, isomahanimbine, and mahanimbine were quantified using multiple reaction monitoring (MRM) experiments within 5.0 min. The respective range for natural abundance of CAs were observed as 0.097–1.222, 0.092–5.014, 0.034–0.661, 0.010–1.673, 0.013–7.336, 0.010–0.310, 0.010–0.114, 0.049–5.288, 0.031–1.731, 0.491–3.791, and 0.492–5.399 mg/g in leaves of M. koenigii. The developed method shown linearity regression coefficient (r2>0.9995), LOD (0.003–0.248 ng/mL), LOQ (0.009–0.754 ng/mL), and the recovery was between 88.803–103.729 %. The bulk of these CAs were recorded in their highest concentrations in the humid subtropical zone, followed by the tropical wet & dry zones of India. Further, principal component analysis (PCA) was performed which differentiated the climatic zones according to the dominant and significant CAs contents within the populations. The study concludes that the method established is simple, rapid, with high sample throughput, and can be used as a tool for commercial purposes and quality control of M. koenigii.  相似文献   
107.
108.
109.
Cyclins are indispensable elements of the cell cycle and derangement of their function can lead to cancer formation. Recent studies have also revealed more mechanisms through which cyclins can express their oncogenic potential. This review focuses on the aberrant expression of G1/S cyclins and especially cyclin D and cyclin E; the pathways through which they lead to tumour formation and their involvement in different types of cancer. These elements indicate the mechanisms that could act as targets for cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号