首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   92篇
  国内免费   1篇
  2023年   7篇
  2022年   9篇
  2021年   20篇
  2020年   5篇
  2019年   13篇
  2018年   8篇
  2017年   10篇
  2016年   9篇
  2015年   17篇
  2014年   19篇
  2013年   29篇
  2012年   46篇
  2011年   39篇
  2010年   19篇
  2009年   23篇
  2008年   37篇
  2007年   32篇
  2006年   22篇
  2005年   22篇
  2004年   28篇
  2003年   29篇
  2002年   20篇
  2001年   11篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   10篇
  1994年   8篇
  1992年   8篇
  1991年   11篇
  1990年   7篇
  1989年   4篇
  1988年   13篇
  1987年   15篇
  1986年   10篇
  1985年   4篇
  1984年   13篇
  1983年   6篇
  1982年   6篇
  1980年   5篇
  1979年   8篇
  1975年   8篇
  1973年   3篇
  1972年   3篇
  1970年   6篇
  1969年   7篇
  1968年   8篇
  1967年   4篇
  1966年   5篇
  1961年   4篇
排序方式: 共有700条查询结果,搜索用时 31 毫秒
61.
A quantitative proteomics workflow was implemented that provides extended plasma protein coverage by extensive protein depletion in combination with the sensitivity and breadth of analysis of two-dimensional LC-MS/MS shotgun analysis. Abundant proteins were depleted by a two-stage process using IgY and Supermix depletion columns in series. Samples are then extensively fractionated by two-dimensional chromatography with fractions directly deposited onto MALDI plates. Decoupling sample fractionation from mass spectrometry facilitates a targeted MS/MS precursor selection strategy that maximizes measurement of a consistent set of peptides across experiments. Multiplexed stable isotope labeling provides quantification relative to a common reference sample and ensures an identical set of peptides measured in the set of samples (set of eight) combined in a single experiment. The more extensive protein depletion provided by the addition of the Supermix column did not compromise overall reproducibility of the measurements or the ability to reliably detect changes in protein levels between samples. The implementation of this workflow is presented for a case study aimed at generating molecular signatures for prediction of first heart attack.  相似文献   
62.
The Notch, Sonic Hedgehog (Shh), Wnt, and EGF pathways have long been known to influence cell fate specification in the developing nervous system. Here we attempted to evaluate the contemporary knowledge about neural stem cell differentiation promoted by various drug-based regulations through a systems biology approach. Our model showed the phenomenon of DAPT-mediated antagonism of Enhancer of split [E(spl)] genes and enhancement of Shh target genes by a SAG agonist that were effectively demonstrated computationally and were consistent with experimental studies. However, in the case of model simulation of Wnt and EGF pathways, the model network did not supply any concurrent results with experimental data despite the fact that drugs were added at the appropriate positions. This paves insight into the potential of crosstalks between pathways considered in our study. Therefore, we manually developed a map of signaling crosstalk, which included the species connected by representatives from Notch, Shh, Wnt, and EGF pathways and highlighted the regulation of a single target gene, Hes-1, based on drug-induced simulations. These simulations provided results that matched with experimental studies. Therefore, these signaling crosstalk models complement as a tool toward the discovery of novel regulatory processes involved in neural stem cell maintenance, proliferation, and differentiation during mammalian central nervous system development. To our knowledge, this is the first report of a simple crosstalk map that highlights the differential regulation of neural stem cell differentiation and underscores the flow of positive and negative regulatory signals modulated by drugs.  相似文献   
63.
Technological advances make it possible to use high-throughput sequencing as a primary discovery tool of medical genetics, specifically for assaying rare variation. Still this approach faces the analytic challenge that the influence of very rare variants can only be evaluated effectively as a group. A further complication is that any given rare variant could have no effect, could increase risk, or could be protective. We propose here the C-alpha test statistic as a novel approach for testing for the presence of this mixture of effects across a set of rare variants. Unlike existing burden tests, C-alpha, by testing the variance rather than the mean, maintains consistent power when the target set contains both risk and protective variants. Through simulations and analysis of case/control data, we demonstrate good power relative to existing methods that assess the burden of rare variants in individuals.  相似文献   
64.
65.
In the past few decades, scientists from all over the world have taken a keen interest in novel functional units such as small regulatory RNAs, small open reading frames, pseudogenes, transposons, integrase binding attB/attP sites, repeat elements within the bacterial intergenic regions (IGRs) and in the analysis of those junk regions for ge- nomic complexity. Here we have developed a web server, named Junker, to facilitate the in-depth analysis of IGRs for examining their length distribution, four-quadrant...  相似文献   
66.
The simultaneous utilization of efficient respiration and inefficient fermentation even in the presence of abundant oxygen is a puzzling phenomenon commonly observed in bacteria, yeasts, and cancer cells. Despite extensive research, the biochemical basis for this phenomenon remains obscure. We hypothesize that the outcome of a competition for membrane space between glucose transporters and respiratory chain (which we refer to as economics of membrane occupancy) proteins influences respiration and fermentation. By incorporating a sole constraint based on this concept in the genome‐scale metabolic model of Escherichia coli, we were able to simulate respiro‐fermentation. Further analysis of the impact of this constraint revealed differential utilization of the cytochromes and faster glucose uptake under anaerobic conditions than under aerobic conditions. Based on these simulations, we propose that bacterial cells manage the composition of their cytoplasmic membrane to maintain optimal ATP production by switching between oxidative and substrate‐level phosphorylation. These results suggest that the membrane occupancy constraint may be a fundamental governing constraint of cellular metabolism and physiology, and establishes a direct link between cell morphology and physiology.  相似文献   
67.
The advent of rapid complete genome sequencing, and the potential to capture this information in genome-scale metabolic models, provide the possibility of comprehensively modeling microbial community interactions. For example, Rhodoferax and Geobacter species are acetate-oxidizing Fe(III)-reducers that compete in anoxic subsurface environments and this competition may have an influence on the in situ bioremediation of uranium-contaminated groundwater. Therefore, genome-scale models of Geobacter sulfurreducens and Rhodoferax ferrireducens were used to evaluate how Geobacter and Rhodoferax species might compete under diverse conditions found in a uranium-contaminated aquifer in Rifle, CO. The model predicted that at the low rates of acetate flux expected under natural conditions at the site, Rhodoferax will outcompete Geobacter as long as sufficient ammonium is available. The model also predicted that when high concentrations of acetate are added during in situ bioremediation, Geobacter species would predominate, consistent with field-scale observations. This can be attributed to the higher expected growth yields of Rhodoferax and the ability of Geobacter to fix nitrogen. The modeling predicted relative proportions of Geobacter and Rhodoferax in geochemically distinct zones of the Rifle site that were comparable to those that were previously documented with molecular techniques. The model also predicted that under nitrogen fixation, higher carbon and electron fluxes would be diverted toward respiration rather than biomass formation in Geobacter, providing a potential explanation for enhanced in situ U(VI) reduction in low-ammonium zones. These results show that genome-scale modeling can be a useful tool for predicting microbial interactions in subsurface environments and shows promise for designing bioremediation strategies.  相似文献   
68.
69.
Diesel exhaust particles (DEP) are a major source of air-borne pollution and are linked to increased risk of disease including lung cancer. Here we investigated effects of exposure to DEP on the frequency of DNA deletions, levels of oxidative DNA damage and DNA adduct formation during embryonic development in mice. Pregnant dams were orally exposed to various doses of DEP (500, 250, 125, 62.5, 31.25 mg/kg/day) at embryonic days 10.5–15.5. We determined the frequency of 70 kb DNA deletions spanning exons 6–18 at the pun allele that results in black-pigmented spots in the unpigmented retinal pigment epithelium in the eyes of pun/pun offspring mice. DEP caused a significant increase in the frequency of DNA deletions. Levels of 8-OH deoxyguanosine indicating oxidative DNA damage were within the limits of the unexposed mouse embryos. 33P post-labeling analysis revealed very low levels of DNA adducts in the embryo tissue. Thus, transplacental exposure to DEP resulted in a significant increase in the frequency of DNA deletions in the mouse fetus and such genetic alterations in the offspring may have pathological consequences later in life.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号