全文获取类型
收费全文 | 430篇 |
免费 | 26篇 |
专业分类
456篇 |
出版年
2023年 | 3篇 |
2022年 | 8篇 |
2021年 | 10篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 7篇 |
2017年 | 5篇 |
2016年 | 12篇 |
2015年 | 16篇 |
2014年 | 21篇 |
2013年 | 31篇 |
2012年 | 23篇 |
2011年 | 31篇 |
2010年 | 25篇 |
2009年 | 18篇 |
2008年 | 25篇 |
2007年 | 15篇 |
2006年 | 17篇 |
2005年 | 12篇 |
2004年 | 14篇 |
2003年 | 15篇 |
2002年 | 13篇 |
2001年 | 15篇 |
2000年 | 15篇 |
1999年 | 13篇 |
1998年 | 2篇 |
1997年 | 5篇 |
1996年 | 7篇 |
1995年 | 5篇 |
1994年 | 5篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1989年 | 5篇 |
1988年 | 5篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 5篇 |
1984年 | 4篇 |
1983年 | 5篇 |
1979年 | 4篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 3篇 |
1973年 | 1篇 |
1962年 | 1篇 |
1960年 | 1篇 |
1955年 | 1篇 |
1951年 | 1篇 |
1948年 | 2篇 |
排序方式: 共有456条查询结果,搜索用时 15 毫秒
131.
132.
Pseudomonas aeruginosa strain NB1 uses chloromethane (CM) as its sole source of carbon and energy under nitrate-reducing and aerobic conditions. The observed yield of NB1 was 0.20 (+/-0.06) (mean +/- standard deviation) and 0.28 (+/-0.01) mg of total suspended solids (TSS) mg of CM(-1) under anoxic and aerobic conditions, respectively. The stoichiometry of nitrate consumption was 0.75 (+/-0.10) electron equivalents (eeq) of NO(3)(-) per eeq of CM, which is consistent with the yield when it is expressed on an eeq basis. Nitrate was stoichiometrically converted to dinitrogen (0.51 +/- 0.05 mol of N(2) per mol of NO(3)(-)). The stoichiometry of oxygen use with CM (0.85 +/- 0.21 eeq of O(2) per eeq of CM) was also consistent with the aerobic yield. Stoichiometric release of chloride and minimal accumulation of soluble metabolic products (measured as chemical oxygen demand) following CM consumption, under anoxic and aerobic conditions, indicated complete biodegradation of CM. Acetylene did not inhibit CM use under aerobic conditions, implying that a monooxygenase was not involved in initiating aerobic CM metabolism. Under anoxic conditions, the maximum specific CM utilization rate (k) for NB1 was 5.01 (+/-0.06) micromol of CM mg of TSS(-1) day(-1), the maximum specific growth rate (micro(max)) was 0.0506 day(-1), and the Monod half-saturation coefficient (K(s)) was 0.067 (+/-0.004) microM. Under aerobic conditions, the values for k, micro(max), and K(s) were 10.7 (+/-0.11) micromol of CM mg of TSS(-1) day(-1), 0.145 day(-1), and 0.93 (+/-0.042) microM, respectively, indicating that NB1 used CM faster under aerobic conditions. Strain NB1 also grew on methanol, ethanol, and acetate under denitrifying and aerobic conditions, but not on methane, formate, or dichloromethane. 相似文献
133.
In this report we describe that 1,25(OH)(2)D(3)-3-BE, a VDR-affinity labeling analog of 1,25(OH)(2)D(3), showed strong and dose-dependent growth-inhibitory effect in several epithelial cells, i.e., keratinocytes (primary cells), MCF-7 breast cancer, PC-3, and LNCaP prostate cancer and PZ-HPV-7 immortalized normal prostate cell-lines. Furthermore, 10(-6) M of 1,25(OH)(2)D(3)-3-BE induced apoptosis specifically in LNCaP and PC-3 cells; and the effect was much less pronounced at lower doses. We also showed that the effect (of 1,25(OH)(2)D(3)-3-BE) was not due to probable degradation (hydrolysis) of 1,25(OH)(2)D(3)-3-BE or random interaction of this molecule with cellular proteins. Tissue- or cell-specific action of 1,25(OH)(2)D(3) and its mimics is not common due to the ubiquitous nature of VDR. Furthermore, variable effects of 1,25(OH)(2)D(3) and its analogs in various cell-lines potentially limits their application as anticancer agents. We showed that 1,25(OH)(2)D(3)-3-BE displayed similar growth-inhibitory and cytotoxic activities towards androgen sensitive LNCaP and androgen-independent PC-3 cell-lines. Therefore, these results raise the possibility that 1,25(OH)(2)D(3)-3-BE or similar VDR-cross linking analogs of 1,25(OH)(2)D(3) might be considered for further development as potential candidates for prostate cancer. 相似文献
134.
Ghanshyam Teli Rohit Pal Lalmohan Maji Sindhuja Sengupta Nulgumnalli Manjunathaiah Raghavendra Gurubasavaraja Swamy Purawarga Matada 《化学与生物多样性》2023,20(9):e202300515
The physiological Src proto-oncogene is a protein tyrosine kinase receptor that served as the essential signaling pathway in different types of cancer. Src kinase receptor is divided into different domains: a unique domain, an SH3 domain, an SH2 domain, a protein tyrosine kinase domain, and a regulatory tail, which runs from the N-terminus to the C-terminus. Src kinase inhibitors bind in the kinase domain and are activated by phosphorylation. The etiology of cancer involved various signaling pathways and Src signaling pathways are also involved in those clusters. Although the dysregulation of Src kinase resulted in cancer being discovered in the late 19th century it is still considered a cult pathway because it is not much explored by different medicinal chemists and oncologists. The Src kinase regulated through different kinase pathways (MAPK, PI3K/Akt/mTOR, JAK/STAT3, Hippo kinase, PEAK1, and Rho/ROCK pathways) and proceeded downstream signaling to conduct cell proliferation, angiogenesis, migration, invasion, and metastasis of cancer cells. There are numerous FDA-approved drugs flooded the market but still, there is a huge demand for the creation of novel anticancer drugs. As the existing drugs are accompanied by several adverse effects and drug resistance due to rapid mutation in proteins. In this review, we have elaborated about the structure and activation of Src kinase, as well as the development of Src kinase inhibitors. Our group also provided a comprehensive overview of Src inhibitors throughout the last two decades, including their biological activity, structure-activity relationship, and Src kinase selectivity. The Src binding pocket has been investigated in detail to better comprehend the interaction of Src inhibitors with amino acid residues. We have strengthened the literature with our contribution in terms of molecular docking and ADMET studies of top compounds. We hope that the current analysis will be a useful resource for researchers and provide glimpse of direction toward the design and development of more specific, selective, and potent Src kinase inhibitors. 相似文献
135.
136.
Studies on tryptophan residues of Abrus agglutinin. Stopped-flow kinetics of modification and fluorescence-quenching studies. 总被引:1,自引:1,他引:1 下载免费PDF全文
The presence of two essential tryptophan residues/molecule was implicated in the binding site of Abrus agglutinin [Patanjali, Swamy, Anantharam, Khan & Surolia (1984) Biochem. J. 217, 773-781]. A detailed study of the stopped-flow kinetics of the oxidation of tryptophan residues revealed three classes of tryptophan residues in the native protein. A discrete reorganization of tryptophan residues revealed three classes of tryptophan residues in the native protein. A discrete reorganization of tryptophan residues into two phases was observed upon ligand binding. The heterogeneity of tryptophan exposure was substantiated by quenching studies with acrylamide, succinimide and Cs+. Our study revealed the microenvironment of tryptophan residues to be hydrophobic, and also the presence of acidic amino acid residues in the vicinity of surface-localized tryptophan residues. 相似文献
137.
Hydration structure and dynamics of B- and Z-DNA in the presence of counterions via molecular dynamics simulations 总被引:2,自引:0,他引:2
Following our previous attempts at understanding the structural and dynamical properties of water and counterions hydrating nucleic acids, we have performed molecular dynamics simulations for B- and Z-DNA. In these simulations, the nucleic acids were held rigid. In the case of B-DNA, one turn of B-DNA double helix was considered in the presence of 1500 water molecules and 20 counterions (K+). The simulations were performed for 4.0 ps after equilibrating the system. For Z-DNA, we considered one turn of the double helix in the presence of 1851 water molecules and 24 counterions (K+). The simulations were carried out for 3.5 ps after equilibration. The average temperature of these simulations was ~ 360 K for Z-DNA and ~ 345 K for B-DNA. In these simulations the hydrogen atoms were explicitly taken into account. For both simulations, a fifth-order predictor-corrector was used for solving the translational equations of motion. The rotational motion of the water molecules was represented in terms of quaternion algebra and the rotational equations of motion were solved with a second-order quaternion method using a sixth-order predictor-corrector method. A time step of 0.5 · 10?15 s was used in these simulations. The structural and the dynamical properties of water solvating the counterions, and the phosphate groups of the DNA, were computed to understand the hydration structure. Diffusion coefficients and velocity correlation functions were calculated for both ions and the water molecules. The velocity correlation functions for the ions exhibit a caged behavior. The dipole correlation functions for the water molecules indicate that the water molecules close to the helix retain the memory of their initial orientations for longer periods of time than those away from the helix. During the time period of our simulation (3–4 ps) the ion probability distributions show a well-defined pattern and suggest limited mobility for the ions, being close to the helix. 相似文献
138.
Fourier-transform infrared spectroscopic studies on avidin secondary structure and complexation with biotin and biotin-lipid assemblies. 下载免费PDF全文
Fourier-transform infrared studies have been carried out to investigate the secondary structure and thermal stability of hen egg white avidin and its complexes with biotin and with a biotinylated lipid derivative, N-biotinyl dimyristoyl phosphatidylethanolamine (DMBPE) in aqueous dispersion. Analysis of the amide I stretching band of avidin yielded a secondary structural content composed of approximately 66% beta-sheet and extended structures, with the remainder being attributed to disordered structure and beta-turns. Binding of biotin or specific association with the biotinylated lipid DMBPE did not result in any appreciable changes in the secondary structure content of the protein, but a change in hydrogen bond stability of the beta-sheet or extended chain regions was indicated. The latter effect was enhanced by surface interactions in the case of the biotin-lipid assemblies, as was demonstrated by electrostatic binding to a nonspecific negatively charged lipid. Difference spectra of the bound biotin implicated a direct involvement of the ureido moiety in the ligand interaction that was consistent with hydrogen bonding to amino acid residues in the avidin protein. It was found that complexation with avidin leads to a decrease in bond length of the biotin ureido carbonyl group that is consistent with a reduction of sp3 character of the C-O bond when it is hydrogen bonded to the protein. Studies of the temperature dependence of the spectra revealed that for avidin alone the secondary structure was unaltered up to approximately 75 degrees C, above which the protein undergoes a highly cooperative transition to an unfolded state with concomitant loss of ordered secondary structure. The complexes of avidin with both biotin and membrane-bound DMBPE lipid assemblies display a large increase in thermal stability compared with the native protein. 相似文献
139.
Summary
Clostridium
thermocellum strain SS8 produced 0.25g of ethanol and 0.24g of acetic acid per g cellulose consumed. Enhancement in ethanol production upto 0.39g/g substrate was observed in the presence of 0.15mM concentration of sodium azide and 7% polyethyleneglycol along with significant repression in acetic acid formation. 相似文献
140.
Sheeba V Nihal M Mathew SJ Swamy NM Chandrashekaran MK Joshi A Sharma VK 《Chronobiology international》2001,18(4):601-612
The eclosion rhythm of a laboratory population of Drosophila melanogaster was studied under 12h light, 12h dark (LD 12:12) cycles. Although most of the flies were found to eclose just after “lights on” in LD 12:12, termed within gate (WG) flies, a few flies were found to eclose nearly 10h after peak eclosion, termed outside gate (OG) flies. The circadian parameters of the clocks controlling oviposition rhythms in the WG and the OG flies were estimated to understand the cause of such differences in the timing of eclosion. The distribution of the fraction of individual flies exhibiting single, multiple, and no significant period in the WG flies was significantly different from distribution in the OG flies. Compared to the WG flies, more OG flies were found to exhibit oviposition rhythm with multiple periodicity, whereas more WG flies exhibited an oviposition rhythm with a single significant period. The fraction of flies with arrhythmic oviposition was similar in both the WG and the OG flies. Free-running period τ in constant darkness (DD) and the phase angle difference ψ in LD 12:12 for the oviposition rhythm of WG and OG flies were significantly different. These results suggest that the differences in the time of eclosion between the flies eclosing within the gate and outside the gate of eclosion are probably due to differences in the circadian system controlling eclosion, which is reflected by the differences in their oviposition rhythm. (Chronobiology International, 18(4), 601-612, 2001) 相似文献