首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   7篇
  国内免费   1篇
  48篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2011年   3篇
  2010年   2篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  1998年   1篇
  1988年   2篇
  1950年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
31.
Our aim was to examine the docosahexaenoic acid (DHA; 22:6n-3) status of pregnant African-American women reporting to the antenatal clinic at Wayne State University in a longitudinal study design. Fatty acid compositions of plasma and erythrocyte total lipid extracts were determined and food frequency surveys were administered at 24 weeks of gestation, delivery, and 3 months postpartum for participants (n = 157). DHA (mean +/- SD) in the estimated total circulating plasma was similar at gestation (384 +/- 162 mg) and delivery (372 +/- 155 mg) but was significantly lower at 3 months postpartum (178 +/- 81 mg). The relative weight percentage of DHA and docosapentaenoic acid n-6 (DPAn-6; 22:5n-6) decreased postpartum, whereas their respective metabolic precursors, eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (AA; 20:4n-6), increased. Similar results were found in erythrocytes. Dietary intake of DHA throughout the study was estimated at 68 +/- 75 mg/day. The relative amounts of circulating DHA and DPAn-6 were increased during pregnancy compared with 3 months postpartum, possibly via increased synthesis from EPA and AA. The low dietary intake and blood levels of DHA in this population compared with others may not support optimal fetal DHA accretion and subsequent neural development.  相似文献   
32.
Adaptor proteins play important endocytic roles including recognition of internalization signals in transmembrane cargo. Sla1p serves as the adaptor for uptake of transmembrane proteins containing the NPFxD internalization signal, and is essential for normal functioning of the actin cytoskeleton during endocytosis. The Sla1p homology domain 1 (SHD1) within Sla1p is responsible for recognition of the NPFxD signal. This study presents the NMR structure of the NPFxD-bound state of SHD1 and a model for the protein-ligand complex. The alpha+beta structure of the protein reveals an SH3-like topology with a solvent-exposed hydrophobic ligand binding site. NMR chemical shift perturbations and effects of structure-based mutations on ligand binding in vitro define residues that are key for NPFxD binding. Mutations that abolish ligand recognition in vitro also abolish NPFxD-mediated receptor internalization in vivo. Thus, SHD1 is a novel functional domain based on SH3-like topology, which employs a unique binding site to recognize the NPFxD endocytic internalization signal. Its distant relationship with the SH3 fold endows this superfamily with a new role in endocytosis.  相似文献   
33.
Cellular insulin stimulation generates a burst of H(2)O(2) that modulates protein-tyrosine phosphorylation in the insulin action pathway, in part by the inhibition of redox-sensitive protein-tyrosine phosphatases [J. Biol. Chem. 276 (2001) 21938]. Blocking the insulin-induced rise in H(2)O(2) with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) strongly attenuated the activation of phosphatidylinositol 3' (PI 3')-kinase, Akt and GLUT4 translocation by insulin in 3T3-L1 adipocytes; however, under identical conditions, we observed a paradoxical increase in the activation of p42/p44 mitogen-activated protein (MAP) kinase. DPI inhibited the insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1/2, and also reduced the association of Grb2 with IRS-1, suggesting that the effect of DPI on MAP kinase activation occurred downstream of the IR and IRS proteins. DPI increased the insulin-stimulated phosphorylation of p42/p44 MAP kinase with no change in basal, and increased insulin-stimulated MAP kinase kinase (MEK) activity by a similar degree. DPI enhanced basal Grb2-Sos binding and reduced the effect of insulin to potentiate the dissociation of the Grb2-Sos complex, suggesting that the effect of DPI was mediated upstream of Raf-1. Cell treatment with dibutyryl cAMP significantly reduced the enhancement of MAP kinase activation in the presence of DPI. However, forskolin, acting in a PKA-independent manner, increased the insulin stimulation of MAP kinase and MEK, but fully abrogated the effect of DPI to enhance these insulin responses. PLCgamma inhibition with U73122 blocked the insulin stimulation of MAP kinase and MEK as well as the enhancing effect of DPI on these responses. PKC activation strongly stimulated MAP kinase and MEK activation, even in the presence of U73122, consistent with PKC acting downstream of PLCgamma. These data show that the insulin-stimulated oxidant signal differentially affects the two major downstream components of the insulin signaling pathway, PI 3'-kinase and MAP kinase, and cross-talk between insulin action, PLCgamma and, to a lesser extent, PKA modulates the net cellular effects of insulin-stimulated cellular H(2)O(2).  相似文献   
34.
35.
Adoptive immunotherapy using TCR-engineered PBLs against melanocyte differentiation Ags mediates objective tumor regression but is associated with on-target toxicity. To avoid toxicity to normal tissues, we targeted cancer testis Ag (CTA) MAGE-A3, which is widely expressed in a range of epithelial malignancies but is not expressed in most normal tissues. To generate high-avidity TCRs against MAGE-A3, we employed a transgenic mouse model that expresses the human HLA-A*0201 molecule. Mice were immunized with two HLA-A*0201-restricted peptides of MAGE-A3: 112-120 (KVAELVHFL) or MAGE-A3: 271-279 (FLWGPRALV), and T cell clones were generated. MAGE-A3-specific TCR α- and β-chains were isolated and cloned into a retroviral vector. Expression of both TCRs in human PBLs demonstrated Ag-specific reactivity against a range of melanoma and nonmelanoma tumor cells. The TCR against MAGE-A3: 112-120 was selected for further development based on superior reactivity against tumor target cells. Interestingly, peptide epitopes from MAGE-A3 and MAGE-A12 (and to a lesser extent, peptides from MAGE-A2 and MAGE-A6) were recognized by PBLs engineered to express this TCR. To further improve TCR function, single amino acid variants of the CDR3 α-chain were generated. Substitution of alanine to threonine at position 118 of the α-chain in the CDR3 region of the TCR improved its functional avidity in CD4 and CD8 cells. On the basis of these results, a clinical trial is planned in which patients bearing a variety of tumor histologies will receive autologous PBLs that have been transduced with this optimized anti-MAGE-A3 TCR.  相似文献   
36.
37.
Characterizing Sec tRNAs that decode UGA provides one of the most direct and easiest means of determining whether an organism possesses the ability to insert selenocysteine (Sec) into protein. Herein, we used a combination of two techniques, computational to identify Sec tRNA genes and RT-PCR to sequence the gene products, to unequivocally demonstrate that two widely studied, model protozoans, Dictyostelium discoideum and Tetrahymena thermophila, encode Sec tRNA in their genomes. The advantage of using both procedures is that computationally we could easily detect potential Sec tRNA genes and then confirm by sequencing that the Sec tRNA was present in the tRNA population, and thus the identified gene was not a pseudogene. Sec tRNAs from both organisms decode UGA. T. thermophila Sec tRNA, like all other sequenced Sec tRNAs, is 90 nucleotides in length, while that from D. discoideum is 91 nucleotides long making it the longest eukaryotic sequenced to date. Evolutionary analyses of known Sec tRNAs reveal the two forms identified herein are the most divergent eukaryotic Sec tRNAs thus far sequenced.  相似文献   
38.
In vitro propagation has played a key role for obtaining large numbers of virus free, homogenous plants, and for breeding of plantains and bananas (Musa spp.). Explant sources utilized for banana micropropagation include suckers, shoot tips, and floral buds. The present study employed male floral meristems as explant material for micropropagation of hill banana ecotypes (AAB) ‘Virupakshi’ and ‘Sirumalai.’ Immature male floral buds were collected from healthy plants from hill banana growing areas. Exposure of explants to ethyl alcohol (70%, v/v) for 30 s, then mercuric chloride (0.1%, w/v) for 30 s, followed by three independent rinses of 5 min each in autoclaved, double-distilled water satisfactorily reduced the contamination. Male floral bud explants were cultured on Murashige and Skoog (MS) basal medium supplemented with different combinations of 6-benzylaminopurine (BAP), coconut water, naphthaleneacetic acid, gibberellic acid, and additional supplements. MS medium supplemented with 5 mg l−1 BAP and coconut water (15%) was the most efficient media for shoot initiation and multiple shoot formation (15 shoots from a single part of a floral bud). The best response for shoot elongation was obtained using the combination of basal MS, 5 mg l−1 BAP, 1 mg l−1 naphthaleneacetic acid and 1.5 mg l−1 gibberellic acid. Regenerated shoots were rooted in basal MS medium within 15–20 d. The rooted plantlets were transferred to a soil mixture and maintained at a temperature of 25 ± 2°C for 10 d and then at room temperature (30–32°C) for 2 wk, before transferring to a greenhouse. The regenerated plantlets showed 100% survival.  相似文献   
39.
Novel mouse models were developed in which the hepatic selenoprotein population was targeted for removal by disrupting the selenocysteine (Sec) tRNA([Ser]Sec) gene (trsp), and selenoprotein expression was then restored by introducing wild type or mutant trsp transgenes. The selenoprotein population was partially replaced in liver with mutant transgenes encoding mutations at either position 34 (34T-->A) or 37 (37A-->G) in tRNA([Ser]Sec). The A34 transgene product lacked the highly modified 5-methoxycarbonylmethyl-2'-O-methyluridine, and its mutant base A was converted to I34. The G37 transgene product lacked the highly modified N(6)-isopentenyladenosine. Both mutant tRNAs lacked the 2'-methylribose at position 34 (Um34), and both supported expression of housekeeping selenoproteins (e.g. thioredoxin reductase 1) in liver but not stress-related proteins (e.g. glutathione peroxidase 1). Thus, Um34 is responsible for synthesis of a select group of selenoproteins rather than the entire selenoprotein population. The ICA anticodon in the A34 mutant tRNA decoded Cys codons, UGU and UGC, as well as the Sec codon, UGA. However, metabolic labeling of A34 transgenic mice with (75)Se revealed that selenoproteins incorporated the label from the A34 mutant tRNA, whereas other proteins did not. These results suggest that the A34 mutant tRNA did not randomly insert Sec in place of Cys, but specifically targeted selected selenoproteins. High copy numbers of A34 transgene, but not G37 transgene, were not tolerated in the absence of wild type trsp, further suggesting insertion of Sec in place of Cys in selenoproteins.  相似文献   
40.
The aim of this study was to identify the molecular markers (SSR, RAPD and SCAR) associated with Mungbean yellow mosaic virus resistance in an interspecific cross between a mungbean variety, VRM (Gg) 1 X a ricebean variety, TNAU RED. The parental survey was carried out by using 118 markers (including 106 azuki bean primers, seven mungbean primers and five ricebean primers). This study revealed that 42 azuki bean markers (39.62%) and four mungbean markers (54.07%) showed parental polymorphism. These polymorphic markers were surveyed among the 187 F2 plants and the results showed distorted segregation or chromosomal elimination at all the marker loci (thus, deviating from the expected 1:2:1 segregation). None of the plants harboured the homozygous ricebean allele for the markers surveyed and all of them were skewed towards mungbean, VRM (Gg) 1, allele, except a few plants which were found to be heterozygous for few markers. Among the 42 azuki bean SSR markers surveyed, only 10 markers produced heterozygotic pattern in six F2 lines viz. 3, 121, 122, 123, 185 and 186. These markers were surveyed in the corresponding F3 individuals, which too skewed towards the mungbean allele. In this study, one species-specific SCAR marker was developed for ricebean by designing primers from the sequenced putatively species-specific RAPD bands. A single, distinct and brightly resolved band of 400?bp was found amplified only in the resistant parent, TNAU RED, and not in any other six species or in the resistant or the susceptible bulks of the mapping population clearly indicated the identification of SCAR marker specific to the ricebean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号