首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4245篇
  免费   450篇
  国内免费   5篇
  4700篇
  2021年   45篇
  2019年   30篇
  2018年   50篇
  2017年   32篇
  2016年   71篇
  2015年   107篇
  2014年   140篇
  2013年   166篇
  2012年   233篇
  2011年   198篇
  2010年   146篇
  2009年   125篇
  2008年   215篇
  2007年   193篇
  2006年   191篇
  2005年   202篇
  2004年   201篇
  2003年   182篇
  2002年   168篇
  2001年   73篇
  2000年   58篇
  1999年   72篇
  1998年   50篇
  1997年   48篇
  1996年   40篇
  1995年   41篇
  1993年   42篇
  1992年   47篇
  1991年   58篇
  1990年   53篇
  1989年   47篇
  1988年   40篇
  1987年   32篇
  1985年   30篇
  1984年   36篇
  1983年   51篇
  1982年   45篇
  1981年   50篇
  1980年   44篇
  1979年   50篇
  1978年   49篇
  1977年   30篇
  1976年   43篇
  1975年   39篇
  1974年   49篇
  1973年   32篇
  1972年   32篇
  1971年   28篇
  1970年   33篇
  1969年   31篇
排序方式: 共有4700条查询结果,搜索用时 9 毫秒
91.
Metastasis is a major, life-threatening complication of cancer. The bloodstream is the most important disseminative route for cancer cells liberated from their parent tumors. Single circulating cancer cells are arrested in the microvasculature, where the vast majority are killed by rapid or slow processes, and the relatively few survivors grow into micrometastases. We review the underlying causes of one type of rapid cancer cell death in the microcirculation, namely, that caused by biomechanical interactions of cancer cells with microvessel walls, which may result in cell surface membrane expansion and lethal rupture. These lethal interactions appear to be important rate-regulators in hematogenous metastasis, and to dictate some aspects of metastatic patterns. Although these are not the only interactions involving cancer cells, in contrast to others involving cellular and humoral defense mechanisms, they have received comparatively little attention.  相似文献   
92.
A series of cis and trans tetradentate copper macrocyclic complexes, of ring size 14-16, that employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.  相似文献   
93.
Our goal was to compute a stable, full-sequence design of the Drosophila melanogaster engrailed homeodomain. Thermal and chemical denaturation data indicated the design was significantly more stable than was the wild-type protein. The data were also nearly identical to those for a similar, later full-sequence design, which was shown by NMR to adopt the homeodomain fold: a three-helix, globular monomer. However, a 1.65 A crystal structure of the design described here turned out to be of a completely different fold: a four-helix, rodlike tetramer. The crystallization conditions included approximately 25% dioxane, and subsequent experiments by circular dichroism and sedimentation velocity analytical ultracentrifugation indicated that dioxane increases the helicity and oligomerization state of the designed protein. We attribute at least part of the discrepancy between the target fold and the crystal structure to the presence of a high concentration of dioxane.  相似文献   
94.
The lead serum and glucocorticoid-related kinase 1 (SGK1) inhibitors 4-(5-phenyl-1H-pyrrolo[2,3-b]pyridin-3-yl)benzoic acid (1) and {4-[5-(2-naphthalenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]phenyl}acetic acid (2) suffer from low DNAUC values in rat, due in part to formation and excretion of glucuronic acid conjugates. These PK/glucuronidation issues were addressed either by incorporating a substituent on the 3-phenyl ring ortho to the key carboxylate functionality of 1 or by substituting on the group in between the carboxylate and phenyl ring of 2. Three of these analogs have been identified as having good SGK1 inhibition potency and have DNAUC values suitable for in vivo testing.  相似文献   
95.
Apolipoprotein A-I (apoA-I)-mediated cholesterol efflux involves the binding of apoA-I to the plasma membrane via its C terminus and requires cellular ATP-binding cassette transporter (ABCA1) activity. ApoA-I also stimulates secretion of apolipoprotein E (apoE) from macrophage foam cells, although the mechanism of this process is not understood. In this study, we demonstrate that apoA-I stimulates secretion of apoE independently of both ABCA1-mediated cholesterol efflux and of lipid binding by its C terminus. Pulse-chase experiments using (35)S-labeled cellular apoE demonstrate that macrophage apoE exists in both relatively mobile (E(m)) and stable (E(s)) pools, that apoA-I diverts apoE from degradation to secretion, and that only a small proportion of apoA-I-mobilized apoE is derived from the cell surface. The structural requirements for induction of apoE secretion and cholesterol efflux are clearly dissociated, as C-terminal deletions in recombinant apoA-I reduce cholesterol efflux but increase apoE secretion, and deletion of central helices 5 and 6 decreases apoE secretion without perturbing cholesterol efflux. Moreover, a range of 11- and 22-mer alpha-helical peptides representing amphipathic alpha-helical segments of apoA-I stimulate apoE secretion whereas only the C-terminal alpha-helix (domains 220-241) stimulates cholesterol efflux. Other alpha-helix-containing apolipoproteins (apoA-II, apoA-IV, apoE2, apoE3, apoE4) also stimulate apoE secretion, implying a positive feedback autocrine loop for apoE secretion, although apoE4 is less effective. Finally, apoA-I stimulates apoE secretion normally from macrophages of two unrelated subjects with genetically confirmed Tangier Disease (mutations C733R and c.5220-5222delTCT; and mutations A1046D and c.4629-4630insA), despite severely inhibited cholesterol efflux. We conclude that apoA-I stimulates secretion of apoE independently of cholesterol efflux, and that this represents a novel, ABCA-1-independent, positive feedback pathway for stimulation of potentially anti-atherogenic apoE secretion by alpha-helix-containing molecules including apoA-I and apoE.  相似文献   
96.
GPR40 (FFAR1) and GPR120 (FFAR4) are G-protein-coupled receptors (GPCRs) that are activated by long chain fatty acids (LCFAs). GPR40 is expressed at high levels in islets and mediates the ability of LCFAs to potentiate glucose-stimulated insulin secretion (GSIS). GPR120 is expressed at high levels in colon, adipose, and pituitary, and at more modest levels in pancreatic islets. The role of GPR120 in islets has not been explored extensively. Here, we confirm that saturated (e.g. palmitic acid) and unsaturated (e.g. docosahexaenoic acid (DHA)) LCFAs engage GPR120 and demonstrate that palmitate- and DHA-potentiated glucagon secretion are greatly reduced in isolated GPR120 KO islets. Remarkably, LCFA potentiated glucagon secretion is similarly reduced in GPR40 KO islets. Compensatory changes in mRNA expression of GPR120 in GPR40 KO islets, and vice versa, do not explain that LCFA potentiated glucagon secretion seemingly involves both receptors. LCFA-potentiated GSIS remains intact in GPR120 KO islets. Consistent with previous reports, GPR120 KO mice are hyperglycemic and glucose intolerant; however, our KO mice display evidence of a hyperactive counter-regulatory response rather than insulin resistance during insulin tolerance tests. An arginine stimulation test and a glucagon challenge confirmed both increases in glucagon secretion and liver glucagon sensitivity in GPR120 KO mice relative to WT mice. Our findings demonstrate that GPR120 is a nutrient sensor that is activated endogenously by both saturated and unsaturated long chain fatty acids and that an altered glucagon axis likely contributes to the impaired glucose homeostasis observed in GPR120 KO mice.  相似文献   
97.
ATPase activity of plasma membranes isolated from oat (Avena sativa L. cv. Goodfield) roots was activated by divalent cations (Mg2+ = Mn2+ > Zn2+ > Fe2+ > Ca2+) and further stimulated by KCl and a variety of monovalent salts, both inorganic and organic. The enzyme exhibited greater specificity for cations than anions. The presence of Mg2+ was necessary for KCl stimulation. Ca2+ was ineffective in replacing Mg2+ for activation of plasma membrane ATPase, but it did activate other membrane-bound ATPases. The pH optima for Mg2+ activation and KCl stimulation of the plasma membrane ATPase were 7.5 and 6.5, respectively.  相似文献   
98.
Constitutive β-catenin/Tcf activity, the primary transforming events in colorectal carcinoma, occurs through induction of the Wnt pathway or APC gene mutations that cause familial adenomatous polyposis. Mice carrying Apc mutations in their germ line (ApcMin) develop intestinal adenomas. Here, the crossing of ApcMin with cyclin D1−/− mice reduced the intestinal tumor number in animals genetically heterozygous or nullizygous for cyclin D1. Decreased tumor number in the duodenum, intestines, and colons of ApcMin/cyclin D1+/− mice correlated with reduced cellular proliferation and increased differentiation. Cyclin D1 deficiency reduced DNA synthesis and induced differentiation of colonic epithelial cells harboring mutant APC but not wild-type APC cells in vivo. In previous studies, the complete loss of cyclin D1 through homozygous genetic deletion conveyed breast tumor resistance. The protection of mice, genetically predisposed to intestinal tumorigenesis, through cyclin D1 heterozygosity suggests that modalities that reduce cyclin D1 abundance could provide chemoprotection.  相似文献   
99.
Costimulation blockade protocols are effective in prolonging allograft survival in animal models and are entering clinical trials, but how environmental perturbants affect graft survival remains largely unstudied. We used a costimulation blockade protocol consisting of a donor-specific transfusion and anti-CD154 mAb to address this question. We observed that lymphocytic choriomeningitis virus infection at the time of donor-specific transfusion and anti-CD154 mAb shortens allograft survival. Lymphocytic choriomeningitis virus 1) activates innate immunity, 2) induces allo-cross-reactive T cells, and 3) generates virus-specific responses, all of which may adversely affect allograft survival. To investigate the role of innate immunity, mice given costimulation blockade and skin allografts were coinjected with TLR2 (Pam3Cys), TLR3 (polyinosinic:polycytidylic acid), TLR4 (LPS), or TLR9 (CpG) agonists. Costimulation blockade prolonged skin allograft survival that was shortened after coinjection by TLR agonists. To investigate underlying mechanisms, we used "synchimeric" mice which circulate trace populations of anti-H2b transgenic alloreactive CD8+ T cells. In synchimeric mice treated with costimulation blockade, coadministration of all four TLR agonists prevented deletion of alloreactive CD8+ T cells and shortened skin allograft survival. These alloreactive CD8+ T cells 1) expressed the proliferation marker Ki-67, 2) up-regulated CD44, and 3) failed to undergo apoptosis. B6.TNFR2-/- and B6.IL-12R-/- mice treated with costimulation blockade plus LPS also exhibited short skin allograft survival whereas similarly treated B6.CD8alpha-/- and TLR4-/- mice exhibited prolonged allograft survival. We conclude that TLR signaling abrogates the effects of costimulation blockade by preventing alloreactive CD8+ T cell apoptosis through a mechanism not dependent on TNFR2 or IL-12R signaling.  相似文献   
100.
Experiments performed in polyethylene glycol and with a divalent crosslinker indicate that both mitochondrial malate dehydrogenase and aspartate aminotransferase can form hetero enzyme—enzyme complexes with either glutamate dehydrogenase or citrate synthase. In general, these as previous results indicate that complexes with the aminotransferase are favored over those with malate dehydrogenase and complexes with glutamate dehydrogenase are favored over those with citrate synthase. When the levels of enzymes are low, the only detectable complex is between the aminotransferase and glutamate dehydrogenase. Under these conditions, palmitoyl-CoA is required for complexes between the other three enzyme pairs, however, palmitoyl-CoA also enhances interactions between glutamate dehydrogenase and the aminotransferase. DPNH disrupts complexes with malate dehydrogenase and has little effect on those with the aminotransferase, while oxalacetate disrupts complexes with citrate synthase but has little effect on those with glutamate dehydrogenase. The citrate synthase-aminotransferase complex was favored in the presence of DPNH plus malate, which disrupt the other three enzyme-enzyme complexes. Glutamate dehydrogenase has a higher affinity and capacity than citrate synthase for palmitoyl-CoA. Consequently, lower levels of palmitoyl-CoA are required to enhance interactions with glutamate dehydrogenase. Furthermore, glutamate dehydrogenase can compete with citrate synthase for palmitoyl-CoA and thus can prevent palmitoyl-CoA from enhancing interactions between citrate synthase and either malate dehydrogenase or the aminotransferase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号