首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3280篇
  免费   194篇
  3474篇
  2024年   2篇
  2023年   19篇
  2022年   43篇
  2021年   94篇
  2020年   41篇
  2019年   75篇
  2018年   110篇
  2017年   116篇
  2016年   166篇
  2015年   170篇
  2014年   221篇
  2013年   245篇
  2012年   292篇
  2011年   305篇
  2010年   199篇
  2009年   115篇
  2008年   222篇
  2007年   191篇
  2006年   157篇
  2005年   181篇
  2004年   117篇
  2003年   128篇
  2002年   85篇
  2001年   15篇
  2000年   11篇
  1999年   15篇
  1998年   17篇
  1997年   15篇
  1996年   5篇
  1995年   14篇
  1994年   12篇
  1993年   11篇
  1992年   10篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1967年   1篇
  1957年   1篇
  1955年   1篇
  1954年   2篇
  1948年   1篇
  1945年   1篇
排序方式: 共有3474条查询结果,搜索用时 15 毫秒
11.
Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley.  相似文献   
12.
The purpose of this study was to determine the relationship between concentrations of Zn and Cu and the activities of superoxide dismutase and glutathione peroxidase in the heart and liver of young rat pups whose dams were fed a diet supplemented with caffeine and/or Zn. Four groups of dams with their newborn pups were fed one of the following diets for 22 d: 20% protein basal diet; the basal diet supplemented with caffeine (2 mg/100 body wt); the basal diet supplemented with Zn (300 mg/kg diet); or the basal diet supplemented with caffeine plus Zn. The Cu levels in the livers of the pups were decreased by maternal intake of the caffeine and Zn diet. The maternal intake of the caffeine diet increased Mn-superoxide dismutase (MnSOD) activity and Cu, Zn-superoxide dismutase (CUZnSOD) in the heart of the pups. On the other hand, the activity of Cu,ZnSOD was significantly reduced in the liver of pups whose dams consumed a caffeine, Zn, or caffeine plus Zn diet. Cu, ZnSOD activity in the liver of the pups seems to be correlated with Cu levels in the tissue. Selenium-dependent glutathione peroxidase (GSH-Px) activities in the heart and liver showed no difference among the groups. The effect of dietary caffeine and/or Zn on the activity of antioxidant enzymes in the heart and liver were different in young rats. The activities of these enzymes in the heart were lower than in the liver of 22-d-old rats. Our experiments indicate that the heart has limited defenses against the toxic effects of peroxides when compared to the liver.  相似文献   
13.
    
It has previously been suggested that inhibition of the proofreading 3-5 exonuclease activity of DNA polymerase may play an important role in generation of UV-induced mutations inEscherichia coli. Our previous work showing that overproduction of , the proofreading subunit of DNA polymerase III, counteracts the SOS mutagenic response ofE. coli seemed to be consistent with this hypothesis. To explore further the nature of the antimutagenic effect of we constructed plasmid pMK17, which encodes only two of the three highly conserved segments of — Exol and ExoII; the third segment, ExoIII, which is essential for 3–5 exonuclease activity, is deleted. We show that at 40°C, over-production of the truncated e subunit significantly delays production of M13 phage, suggesting that the protein retains its capacity to bind to DNA. On the other hand, the presence of pMK17 in atrpE65 strain growing at 40°C causes a 10-fold decrease in the frequency of UV-induced Trp+ mutations. This antimutagenic effect of the truncated s is effectively relieved by excess UmuD,C proteins. We also show that the presence of plasmid pIP21, which contains thednaQ49 allele encoding an subunit that is defective in proofreading activity, almost completely prevents generation of UV-induced mutations in thetrpE65 strain. We propose that the DNA binding ability of free , rather than its 3–5 exonuclease activity, affects processing of premutagenic UV-induced lesions, possibly by interfering with the interaction between the UmuC-UmuD-RecA complex and Pol III holoenzyme. This interaction is probably a necessary condition for translesion synthesis.  相似文献   
14.
Retinitis pigmentosa is the most prevalent inherited disorder of the retina. It can be autosomal dominant (adRP), autosomal recessive (arRP) or X-linked (XLRP). A form of adRP mapping to chromosome 7q was reported in a large Spanish pedigree. We have typed DNA from the members of another Spanish family for polymorphic markers from the known candidate genes. Positive lod scores were obtained only for the markers located on 7q31-35, giving a maximum lod score of 2.98 (3.01 by multipoint analysis) at = 0.00 for D7S480. A brief clinical evaluation is given.  相似文献   
15.
In this study an attempt was made to elucidate the possible mechanism of the brain microsomal (Na+-K+)ATPase inhibition based on the assumption that glycoprotein part of the enzyme is exposed on the outer membrane surface. In our experiments the modification with concanavalin A of sugar end groups exposed by neuraminidase treatment resulted in a significant decrease of the brain (Na+-K+)ATPase activity. The percentage of the enzyme inhibition by concanavalin A binding to the neuraminidase-treated preparation corresponds to the amount of liberated sialic acids. The modification of the glycoprotein part of the brain (Na+-K+)ATPase complex by neuraminidase and concanavalin A treatments did not affect K+-nitrophenylphosphatase activity.  相似文献   
16.
17.
18.
In this single case study, visuospatial neglect patient P1 demonstrated a dissociation between an intact ability to make appropriate reflexive eye movements to targets in the neglected field with latencies of <400 ms, while failing to report targets presented at such durations in a separate verbal detection task. In contrast, there was a failure to evoke the usually robust Remote Distractor Effect in P1, even though distractors in the neglected field were presented at above threshold durations. Together those data indicate that the tight coupling that is normally shown between attention and eye movements appears to be disrupted for low-level orienting in P1. A comparable disruption was also found for high-level cognitive processing tasks, namely reading and scene scanning. The findings are discussed in relation to sampling, attention and awareness in neglect.  相似文献   
19.
Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological processes in plants, most of them involving cross-talk with traditional phytohormones. Auxin is the main hormone that regulates root system architecture. In this communication we report that NO promotes lateral root (LR) development, an auxin-dependent process. Application of the NO donor sodium nitroprusside (SNP) to tomato (Lycopersicon esculentum Mill.) seedlings induced LR emergence and elongation in a dose-dependent manner, while primary root (PR) growth was diminished. The effect is specific for NO since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) blocked the action of SNP. Depletion of endogenous NO with CPTIO resulted in the complete abolition of LR emergence and a 40% increase in PR length, confirming a physiological role for NO in the regulation of root system growth and development. Detection of endogenous NO by the specific probe 4,5-diaminofluorescein diacetate (DAF-2 DA) revealed that the NO signal was specifically located in LR primordia during all stages of their development. In another set of experiments, SNP was able to promote LR development in auxin-depleted seedlings treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Moreover, it was found that LR formation induced by the synthetic auxin 1-naphthylacetic acid (NAA) was prevented by CPTIO in a dose-dependent manner. All together, these results suggest a novel role for NO in the regulation of LR development, probably operating in the auxin signaling transduction pathway.Abbreviations CPTIO 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide - DAF-2 DA 4,5-Diaminofluorescein diacetate - LR Lateral root - NAA 1-Naphthylacetic acid - NO Nitric oxide - NPA N-1-Naphthylphthalamic acid - PR Primary root - SNP Sodium nitroprusside  相似文献   
20.
Esophageal cancer (EC) is one of the most aggressive malignant tumors of the gastrointestinal tract. There are two distinct histological types of EC: esophageal squamous cell carcinoma and adenocarcinoma of the esophagus. Etiologic factors and the patterns of incidence of both subtypes are different. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play an important role in esophageal carcinogenesis. Gellatinases MMP-2 and MMP-9 are able to degrade collagen IV from basement membranes and extracellular matrix which is related to tumor progression, including invasion, metastasis, growth and angiogenesis. It has been shown that increased expression of MMPs plays a crucial role in the development of several human malignancies, including esophageal cancer. The activity of MMPs is regulated by their endogenous natural inhibitors (TIMPs). Among these, the roles of TIMP-1 and TIMP-2 in EC development, tumor progression and formation of metastases have been most extensively characterized and best recognized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号