首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3748篇
  免费   216篇
  2024年   2篇
  2023年   20篇
  2022年   43篇
  2021年   106篇
  2020年   45篇
  2019年   82篇
  2018年   120篇
  2017年   122篇
  2016年   179篇
  2015年   189篇
  2014年   245篇
  2013年   283篇
  2012年   336篇
  2011年   339篇
  2010年   213篇
  2009年   134篇
  2008年   250篇
  2007年   212篇
  2006年   181篇
  2005年   196篇
  2004年   131篇
  2003年   152篇
  2002年   104篇
  2001年   22篇
  2000年   22篇
  1999年   25篇
  1998年   24篇
  1997年   21篇
  1996年   14篇
  1995年   17篇
  1994年   14篇
  1993年   14篇
  1992年   11篇
  1991年   7篇
  1990年   6篇
  1989年   12篇
  1988年   8篇
  1987年   8篇
  1986年   6篇
  1985年   6篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1954年   2篇
排序方式: 共有3964条查询结果,搜索用时 15 毫秒
41.
In this single case study, visuospatial neglect patient P1 demonstrated a dissociation between an intact ability to make appropriate reflexive eye movements to targets in the neglected field with latencies of <400 ms, while failing to report targets presented at such durations in a separate verbal detection task. In contrast, there was a failure to evoke the usually robust Remote Distractor Effect in P1, even though distractors in the neglected field were presented at above threshold durations. Together those data indicate that the tight coupling that is normally shown between attention and eye movements appears to be disrupted for low-level orienting in P1. A comparable disruption was also found for high-level cognitive processing tasks, namely reading and scene scanning. The findings are discussed in relation to sampling, attention and awareness in neglect.  相似文献   
42.
Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological processes in plants, most of them involving cross-talk with traditional phytohormones. Auxin is the main hormone that regulates root system architecture. In this communication we report that NO promotes lateral root (LR) development, an auxin-dependent process. Application of the NO donor sodium nitroprusside (SNP) to tomato (Lycopersicon esculentum Mill.) seedlings induced LR emergence and elongation in a dose-dependent manner, while primary root (PR) growth was diminished. The effect is specific for NO since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) blocked the action of SNP. Depletion of endogenous NO with CPTIO resulted in the complete abolition of LR emergence and a 40% increase in PR length, confirming a physiological role for NO in the regulation of root system growth and development. Detection of endogenous NO by the specific probe 4,5-diaminofluorescein diacetate (DAF-2 DA) revealed that the NO signal was specifically located in LR primordia during all stages of their development. In another set of experiments, SNP was able to promote LR development in auxin-depleted seedlings treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Moreover, it was found that LR formation induced by the synthetic auxin 1-naphthylacetic acid (NAA) was prevented by CPTIO in a dose-dependent manner. All together, these results suggest a novel role for NO in the regulation of LR development, probably operating in the auxin signaling transduction pathway.Abbreviations CPTIO 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide - DAF-2 DA 4,5-Diaminofluorescein diacetate - LR Lateral root - NAA 1-Naphthylacetic acid - NO Nitric oxide - NPA N-1-Naphthylphthalamic acid - PR Primary root - SNP Sodium nitroprusside  相似文献   
43.
44.
Fourteen monocyclic analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds were synthesized by the solid-phase method. The purpose of this work was to establish the role of a disulfide bridge present in inhibitor’s side chains of Cys3 and Cys11 in association with serine proteinases. This cyclic fragment was replaced by the disulfide bridges formed by l-pencillamine (Pen), homo-l-cysteine (Hcy), N-sulfanylethylglycine (Nhcy) or combination of the three with Cys. As in the substrate specificity the P1 position of the synthesized analogues Lys, Nlys [N-(4-aminobutyl)glycine], Phe or Nphe (N-benzylglycine) were present, and they were checked for trypsin and chymotrypsin inhibitory activity. The results clearly indicated that Pen and Nhcy were not acceptable at the position 3, yielding inactive analogues, whereas another residue (Cys11) could be substituted without any significant impact on the affinity towards proteinase. On the other hand, elongation of the Cys3 side chain by introduction of Hcy did not affect inhibitory activity, and an analogue with the Hcy–Hcy disulfide bridge was more than twice as effective as the reference compound ([Phe5] SFTI-1) in inhibition of bovine α-chymotrypsin.  相似文献   
45.
Esophageal cancer (EC) is one of the most aggressive malignant tumors of the gastrointestinal tract. There are two distinct histological types of EC: esophageal squamous cell carcinoma and adenocarcinoma of the esophagus. Etiologic factors and the patterns of incidence of both subtypes are different. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play an important role in esophageal carcinogenesis. Gellatinases MMP-2 and MMP-9 are able to degrade collagen IV from basement membranes and extracellular matrix which is related to tumor progression, including invasion, metastasis, growth and angiogenesis. It has been shown that increased expression of MMPs plays a crucial role in the development of several human malignancies, including esophageal cancer. The activity of MMPs is regulated by their endogenous natural inhibitors (TIMPs). Among these, the roles of TIMP-1 and TIMP-2 in EC development, tumor progression and formation of metastases have been most extensively characterized and best recognized.  相似文献   
46.
Untranslated regions of mRNAs   总被引:4,自引:0,他引:4  
Mignone F  Gissi C  Liuni S  Pesole G 《Genome biology》2002,3(3):reviews0004.1-reviews000410
  相似文献   
47.
A diverse population of regulatory B (Breg) cells reportedly exhibits significant immunomodulatory effects in various models of inflammatory responses and infectious diseases caused by bacteria, viruses or parasites. Breg cells contribute to maintenance of homeostasis via IL‐10 production and multiple IL‐10‐independent mechanisms. The current review describes various phenotypic and functional subsets of Breg cells in autoimmune and infectious diseases and discusses the impacts of experimental conditions that have been found to drive Breg cell differentiation.
  相似文献   
48.
Brachypodium distachyon is a promising model system for the structural and functional genomics of temperate grasses because of its physical, genetic and genome attributes. The sequencing of the inbred line Bd21 ( http://www.brachypodium.org ) started in 2007. However, a transformation method remains to be developed for the community standard line Bd21. In this article, a facile, efficient and rapid transformation system for Bd21 is described using Agrobacterium -mediated transformation of compact embryogenic calli (CEC) derived from immature embryos. Key features of this system include: (i) the use of the green fluorescent protein (GFP) associated with hygromycin selection for rapid identification of transgenic calli and plants; (ii) the desiccation of CEC after inoculation with Agrobacterium ; (iii) the utilization of Bd21 plants regenerated from tissue culture as a source of immature embryos; (iv) the control of the duration of the selection process; and (v) the supplementation of culture media with CuSO4 prior to and during the regeneration of transgenic plants. Approximately 17% of CEC produced transgenic plants, enabling the generation of hundreds of T-DNA insertion lines per experiment. GFP expression was observed in primary transformed Bd21 plants (T0) and their progeny (T1). The Mendelian inheritance of the transgenes was confirmed. An adaptor-anchor strategy was developed for efficient retrieval of flanking sequence tags (FSTs) of T-DNA inserts, and the resulting sequences are available in public databases. The production of T-DNA insertion lines and the retrieval of associated FSTs reported here for the reference inbred line Bd21 will facilitate large-scale functional genomics research in this model system.  相似文献   
49.
The initiation of mucin-type O-glycosylation is catalysed by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (EC 2.4.1.41). These enzymes are responsible for the transfer of N-acetylgalactosamine from the nucleotide sugar donor, UDP-GalNAc, to the hydroxyl group on specific serine or threonine residues in acceptor proteins. By screening a Toxoplasma gondii cDNA library, three distinct isoforms of the ppGalNAc-T gene family were cloned. Two additional isoforms were identified and partially cloned following analysis of the T. gondii genome sequence database. All of the cloned and identified ppGalNAc-T's are type II membrane proteins that share up to 50% amino acid sequence identity within the conserved catalytic domain. They each contain an N-terminal cytoplasmic domain, a hydrophobic transmembrane domain, and a lumenal domain; the latter consists of stem, catalytic, and lectin-like domains. Moreover, each of this ppGalNAc-T's contains important sequence motifs that are typical for this class of glycosyltransferases. These include a glycosyltransferase 1 motif containing the DXH sequence, a Gal/GalNAc-T motif, and the CLD and QXW sequence motifs located in alpha-, beta-, and gamma-repeats present within the lectin-like domain. The coding regions of T. gondii ppGalNAc-T1, -T2, and -T3 reside in multiple exons ranging in number from 6 to 10. Our results demonstrate that mucin-type O-glycosylation in T. gondii is catalysed by a multimember gene family, which is evolutionarily conserved from single-celled eukaryotes through nematodes and insects up to mammals. Taken together, this information creates the basis for future studies of the function of the ppGalNAc-T gene family in the pathobiology of this apicomplexan parasite.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号