首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   46篇
  2023年   5篇
  2022年   11篇
  2021年   21篇
  2020年   16篇
  2019年   15篇
  2018年   16篇
  2017年   7篇
  2016年   22篇
  2015年   52篇
  2014年   36篇
  2013年   54篇
  2012年   61篇
  2011年   61篇
  2010年   36篇
  2009年   34篇
  2008年   36篇
  2007年   40篇
  2006年   41篇
  2005年   37篇
  2004年   51篇
  2003年   23篇
  2002年   18篇
  2001年   9篇
  2000年   6篇
  1999年   8篇
  1998年   11篇
  1997年   12篇
  1996年   8篇
  1995年   10篇
  1994年   7篇
  1993年   6篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   11篇
  1987年   4篇
  1986年   9篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1980年   5篇
  1979年   11篇
  1978年   11篇
  1977年   4篇
  1974年   5篇
  1973年   5篇
  1971年   2篇
  1965年   2篇
排序方式: 共有880条查询结果,搜索用时 15 毫秒
71.

Low temperature is amongst the most influential abiotic stress factors, having deep impact on plant growth, yield and productivity. Studies on beneficial effects of certain biologically active substances, S-methylmethionine (SMM) and salicylic acid (SA) have provided a lot of valuable information regarding their role to counteract harmful effects of environmental stresses such as chilling. To obtain a more complex and stable defence compound with an extended range of stress-protective effect, the new derivative S-methylmethionine salicylate (MMS) was synthesised from the natural, biologically active substances SMM and SA. Since both original materials have complex stress-protective roles, the new compound was expected to combine the effects of original substances and to stabilise the unstable SMM in the new compound, thus providing an extended stress tolerance. Photosynthetic efficiency and accumulation of stress-related metabolites (polyamines and flavonoids) were measured in chilled and control plants, with and without MMS pretreatment, and expression changes of several genes involved in the cold stress response were analysed by quantitative real-time PCR (RT-qPCR) and a detailed microarray study. Our data show how the MMS combines the effect of SMM and SA on molecular level, causing numerous changes in the gene expression pattern and metabolite content. MMS gives rise to a better physiological condition, thus it could provide an alternative, environmental friendly way to enhance the plants defence mechanisms against stressors. As MMS is more stable than SMM, it promises easier, more long-lasting and more cost-effective usage in agriculture, with a complementing effect of SA.

  相似文献   
72.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) is highly regulated in response to fluctuations in the environment, including changes in irradiance. However, no complex data are available on Rubisco regulatory mechanisms triggered in plants which are submitted to moderate–low irradiance shift. Therefore, we investigated in a comprehensive way the changes at the level of amount of Rubisco protein, its structural organization and carboxylase activity of the holoenzyme as triggered by exposure of moderate irradiance‐grown Arabidopsis thaliana plants to low irradiance conditions. An exposure of moderate irradiance‐grown plants to low irradiance for a single photoperiod caused the exclusion of a certain pool of Rubisco under altered conditions owing to oxidative modifications resulting in the formation of protein aggregates involving Rubisco large subunit (LS). As a result, both initial and total Rubisco carboxylase activities were reduced, whereas Rubisco activation state remained largely unchanged. The results of the determination of reactive oxygen species indicated that a moderate/low irradiance transition had stimulated 1O2 accumulation and we strongly suggest that Rubisco oxidative modifications leading to formation of aggregates encompassing Rubisco‐LS were triggered by 1O2. When moderate irradiance regime was resumed, the majority of Rubisco‐LS containing aggregates tended to be resolubilized, and this allowed Rubisco carboxylation activities to be largely recovered, without changes in the activation state of the enzyme. In the longer term, these results allow us to better understand a complexity of Rubisco regulatory mechanisms activated in response to abiotic stresses and during recovery from the stresses.  相似文献   
73.
74.
DNA interstrand cross‐links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL (“approach”), a nucleotide is inserted across from the unhooked lesion (“insertion”), and the leading strand is extended beyond the lesion (“extension”). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site‐specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error‐free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1–pol ζ recruitment requires the Fanconi anemia core complex but not FancI–FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair‐associated mutagenesis.  相似文献   
75.
We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet (Beta vulgaris) and the first genome-wide gene set for spinach (Spinacia oleracea). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of non-model eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0729-7) contains supplementary material, which is available to authorized users.  相似文献   
76.
77.
Rapid cycle breeding in apple is a new approach for the rapid introgression of agronomically relevant traits (e.g. disease resistances) from wild apple species into domestic apple cultivars (Malus × domestica Borkh.). This technique drastically shortens the long‐lasting juvenile phase of apple. The utilization of early‐flowering apple lines overexpressing the BpMADS4 gene of the European silver birch (Betula pendula Roth.) in hybridization resulted in one breeding cycle per year. Aiming for the selection of non‐transgenic null segregants at the end of the breeding process, the flower‐inducing transgene and the gene of interest (e.g. resistance gene) that will be introgressed by hybridization need to be located on different chromosomes. To improve the flexibility of the existing approach in apple, this study was focused on the development and characterization of eleven additional BpMADS4 overexpressing lines of four different apple cultivars. In nine lines, the flowering gene was mapped to different linkage groups. The differences in introgressed T‐DNA sequences and plant genome deletions post‐transformation highlighted the unique molecular character of each line. However, transgenic lines demonstrated no significant differences in flower organ development and pollen functionality compared with non‐transgenic plants. Hybridization studies using pollen from the fire blight‐resistant wild species accession Malus fusca MAL0045 and the apple scab‐resistant cultivar ‘Regia’ indicated that BpMADS4 introgression had no significant effect on the breeding value of each transgenic line.  相似文献   
78.
Methyl tert-butyl ether (MTBE) is a widely used fuel ether, which has become a soil and water contaminant. In this study, 12 microbial strains were isolated from gasoline-contaminated soils and selected because of their capacity to grow in MTBE. The strains were identified by 16S/ITS rDNA gene sequencing and screened for their ability to consume MTBE aerobically in a simple mineral solution. Solid phase microoextraction and gas chromatography were used to detect MTBE degradation. High levels of MTBE biodegradation were obtained using resting cells of the bacteria Achromobacter xylosoxidans MCM1/1 (78%), Enterobacter cloacae MCM2/1 (50%), and Ochrobactrum anthropi MCM5/1 (52%) and the fungus Exophiala dermatitidis MCM3/4 (14%). Our phylogenetic analysis clearly shows that bacterial MTBE biodegraders belong to the clade of Proteobacteria. For further insight, MTBE-degrader strains were profiled by denaturing gel gradient electrophoresis (DGGE) of PCR-amplified 16S rRNA gene sequences. This approach could be used to analyse microbial community dynamics in bioremediation processes.  相似文献   
79.
Human skin mast cells proliferated in the presence of interleukin (IL)-4+SCF (expanding 18-fold in 8 weeks) and acquired profound responsiveness towards high affinity IgE receptor (FcεRI) cross-linking, liberating about 75% of their histamine. In a proof-of-concept, we found that these cells are useful for pharmacological testing. Even a subtle inhibition of degranulation can be visualized. This model might prove valuable in tests of novel anti-allergic drugs.  相似文献   
80.

Background

Few studies have been performed on P wave indices in athletes. The aim of this study was to determine the behaviour of maximum P wave duration (Pmax), minimum P wave duration (Pmin) and P wave dispersion (PWD) in young high performance athletes, as well as the relationship of PWD with training history, heart rate (HR) and echocardiographic parameters.

Methods

We performed a cross-sectional observational study in 38 athletes of high performance in sports: water polo, distance running and weight lifting compared with 34 sedentary controls.

Results

The average age in both groups was 20.6 years. Note that PWD was increased in athletes (57 ± 14 ms vs. 40 ± 12 ms, p <0.001) while Pmin was significantly lower (57 ± 13 ms vs. 72 ± 13 ms, p <0.001), and there was no difference when comparing Pmax (114 ± 9 ms vs. 117 ± 14 ms, p> 0.05). The correlation between the duration of training (r = 0.511) and resting HR (r = 0.461) with PWD was significant (p <0.01).

Conclusions

PWD is increased in young athletes of high performance and was positively correlated with duration of training and baseline HR. The increase in PWD was secondary to a significant decrease in Pmin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号