首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2543篇
  免费   201篇
  国内免费   15篇
  2022年   29篇
  2021年   62篇
  2020年   26篇
  2019年   39篇
  2018年   49篇
  2017年   59篇
  2016年   73篇
  2015年   126篇
  2014年   123篇
  2013年   172篇
  2012年   181篇
  2011年   189篇
  2010年   107篇
  2009年   120篇
  2008年   129篇
  2007年   137篇
  2006年   126篇
  2005年   140篇
  2004年   114篇
  2003年   105篇
  2002年   100篇
  2001年   55篇
  2000年   37篇
  1999年   44篇
  1998年   22篇
  1997年   27篇
  1996年   17篇
  1995年   17篇
  1994年   16篇
  1993年   11篇
  1992年   22篇
  1991年   20篇
  1990年   15篇
  1989年   20篇
  1988年   14篇
  1987年   12篇
  1986年   21篇
  1985年   11篇
  1984年   13篇
  1983年   12篇
  1981年   9篇
  1980年   10篇
  1979年   12篇
  1977年   11篇
  1976年   8篇
  1973年   12篇
  1971年   7篇
  1970年   7篇
  1968年   8篇
  1967年   15篇
排序方式: 共有2759条查询结果,搜索用时 15 毫秒
941.
942.
Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose–methanol–choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.  相似文献   
943.
Benzoindoloquinolines interact with DNA tetraplexes and inhibit telomerase   总被引:4,自引:0,他引:4  
Telomeric G-rich single-stranded DNA can adopt a G-tetraplex structure which has been shown to inhibit telomerase activity. We have examined benzoindoloquinolines derivatives for their ability to stabilize an intramolecular G-quadruplex. The increase in T(m) value of the G-quadruplex was associated with telomerase inhibition in vitro.  相似文献   
944.
945.
This article reports the fabrication and characterization of NPs based on the self-assembling of polymeric drugs with amphiphilic character synthetized from oleyl 2-acetamido-2-deoxy-α-d-glucopyranoside methacrylate and vinyl pyrrolidone (OAGMA-VP). NPs were spherical, with an apparent hydrodynamic diameter between 91 and 226 nm and with zeta potential values that ensure stability. Atomic concentrations of C, O, and N, determined by X-ray photoelectron spectroscopy (XPS) of NPs, compared well with the corresponding theoretical values. High resolution XPS C1s spectra suggest that the carbons bound to heteroatoms or carbonyl groups are preferentially situated on the surface of the NP samples. ToF-SIMS spectra analyzed by principal component analysis (PCA) indicated that ions coming from acetyl and oleyl groups of OAGMA play important roles in the outer structure of NPs. Water contact angle and surface tension values of NPs were characteristic of hydrophilic surfaces, confirming the location of VP sequences on the surface. Cell culture assays showed that copolymeric NPs did not compromise biocompatibility of human fibroblasts according to ISO standard, but they were cytotoxic on a human glioblastoma cell line (A-172).  相似文献   
946.
Seven dextran types, displaying from 3 to 20% α(1→3) glycosidic linkages, were synthesized in vitro from sucrose by mutants of dextransucrase DSR-S from Leuconostoc mesenteroides NRRL B-512F, obtained by combinatorial engineering. The structural and physicochemical properties of these original biopolymers were characterized. When asymmetrical flow field flow fractionation coupled with multiangle laser light scattering was used, it was determined that weight average molar masses and radii of gyration ranged from 0.76 to 6.02 × 10(8) g·mol(-1) and from 55 to 206 nm, respectively. The ν(G) values reveal that dextrans Gcn6 and Gcn7, which contain 15 and 20% α(1→3) linkages, are highly branched and contain long ramifications, while Gcn1 is rather linear with only 3% α(1→3) linkages. Others display intermediate molecular structures. Rheological investigation shows that all of these polymers present a classical non-Newtonian pseudoplastic behavior. However, Gcn_DvΔ4N, Gcn2, Gcn3, and Gcn7 form weak gels, while others display a viscoelastic behavior that is typical of entangled polymer solutions. Finally, glass transition temperature T(g) was measured by differential scanning calorimetry. Interestingly, the T(g) of Gcn1 and Gcn5 are equal to 19.0 and 29.8 °C, respectively. Because of this low T(g), these two original dextrans are able to form rubber and flexible films at ambient temperature without any plasticizer addition. The mechanical parameters determined for Gcn1 films from tensile tests are very promising in comparison to the films obtained with other polysaccharides extracted from plants, algae or microbial fermentation. These results lead the way to using these dextrans as innovative biosourced materials.  相似文献   
947.
We demonstrated that arthritis could be visualized noninvasively using hydrophobically modified glycol chitosan nanoparticles labeled with Cy5.5 (HGC-Cy5.5) and an optical imaging system. Activated macrophages expressing Mac-1 molecules effectively phagocytosed HGC-Cy5.5, which formed spherical nanoparticles under physiologic conditions. We estimated the applicability of HGC-Cy5.5 to quantitative analysis of arthritis development and progression. Near-infrared fluorescence images, captured after HGC-Cy5.5 injection in mice with collagen-induced arthritis, showed stronger fluorescence intensity in the active arthritis group than in the nonarthritis group. According to the progression of arthritis in both collagen-induced arthritis and collagen antibody-induced arthritis models, total photon counts (TPCs) increased in parallel with the clinical arthritis index. Quantitative analysis of fluorescence after treatment with methotrexate showed a significant decrease in TPC in a dose-dependent manner. Histologic evaluation confirmed that the mechanism underlying selective accumulation of HGC-Cy5.5 within synovitis tissues included enhanced phagocytosis of the probe by Mac-1-expressing macrophages as well as enhanced permeability through leaky vessels. These results suggest that optical imaging of arthritis using HGC-Cy5.5 can provide an objective measurement of disease activity and, at the same time, therapeutic responses in rheumatoid arthritis.  相似文献   
948.

Objective

The aim of the present study was to weigh up, at the community level, the respective roles played by pandemic Influenza (pH1N1) virus and co-circulating human Non-Influenza Respiratory Viruses (NIRVs) during the first wave of the 2009 pH1N1 pandemic.

Methods

A population-based prospective cohort study was conducted in Reunion Island during the austral winter 2009 (weeks 30–44) that allowed identification of 125 households with at least one member who developed symptoms of Influenza-like illness (ILI). Three consecutive nasal swabs were collected from each household member (443 individuals) on day 0, 3 and 8 post-ILI report and tested for pH1N1 and 15 NIRVs by RT-PCR.

Results

Two successive waves of viral infections were identified: a first wave (W33–37) when pH1N1 was dominant and co-circulated with NIRVs, sharply interrupted by a second wave (W38–44), almost exclusively composed of NIRVs, mainly human Rhinoviruses (hRV) and Coronaviruses (hCoV). Data suggest that some interference may occur between NIRVs and pH1N1 when they co-circulate within the same household, where NIRVs were more likely to infect pH1N1 negative individuals than pH1N1 positive peers (relative risk: 3.13, 95% CI: 1.80–5.46, P<0.001). Viral shedding was significantly shorter (P = 0.035) in patients who were co-infected by pH1N1 and NIRV or by two different NIRVs compared to those who were infected with only one virus, whatever this virus was (pH1N1 or NIRVs). Although intense co-circulation of NIRVs (especially hRV) likely brought pH1N1 under the detection threshold, it did not prevent spread of the pandemic Influenza virus within the susceptible population nor induction of an extensive herd immunity to it.

Conclusion

Our results suggest that NIRV co-infections during Influenza epidemics may act as cofactors that contribute to shape an outbreak and modulate the attack rate. They further warrant broad spectrum studies to fully understand viral epidemics.  相似文献   
949.
950.

Background

Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia), and to provide an early warning system.

Methodology/Principal Findings

Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March–April) lagged the warmest temperature by 1–2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January–February–March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October–November–December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively.

Conclusions/Significance

The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to anticipate the outbreak risk was successfully developed. Similar models may be developed to improve dengue management in other countries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号