首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2542篇
  免费   201篇
  国内免费   15篇
  2022年   28篇
  2021年   62篇
  2020年   26篇
  2019年   39篇
  2018年   49篇
  2017年   59篇
  2016年   73篇
  2015年   126篇
  2014年   123篇
  2013年   172篇
  2012年   181篇
  2011年   189篇
  2010年   107篇
  2009年   120篇
  2008年   129篇
  2007年   137篇
  2006年   126篇
  2005年   140篇
  2004年   114篇
  2003年   105篇
  2002年   100篇
  2001年   55篇
  2000年   37篇
  1999年   44篇
  1998年   22篇
  1997年   27篇
  1996年   17篇
  1995年   17篇
  1994年   16篇
  1993年   11篇
  1992年   22篇
  1991年   20篇
  1990年   15篇
  1989年   20篇
  1988年   14篇
  1987年   12篇
  1986年   21篇
  1985年   11篇
  1984年   13篇
  1983年   12篇
  1981年   9篇
  1980年   10篇
  1979年   12篇
  1977年   11篇
  1976年   8篇
  1973年   12篇
  1971年   7篇
  1970年   7篇
  1968年   8篇
  1967年   15篇
排序方式: 共有2758条查询结果,搜索用时 31 毫秒
81.
82.
83.
A modified baiting technique was conducted for selective isolation, fungal DNA diagnosis and fungal cell lipid assay derived from Myanmar isolates of Rhizoctonia spp., causal agents of rice sheath diseases by trapping selective plant stem segments. Bait plant materials of rice, mat rush and cotton were successfully used to isolate R. solani AG1-IA, R. oryzae and R. oryzae-sativae. Moreover, the three plant materials were also effectively used to detect genomic DNA derived from all Rhizoctonia spp. obtained from Myanmar. Rice segment was the most successful materials for detection of fungal cell lipids including palmitic, stearic and linoleic acids. The results of this experiment demonstrate that bait plant materials of rice, mat rush and cotton were the best useful tools for not only direct isolation, but also fungal DNA diagnosis and cell lipid assay of Myanmar soil environmental conditions.  相似文献   
84.
Reverse cholesterol transport is a process of high antiatherogenic relevance in which apolipoprotein AI (apoA-I) plays an important role. The interaction of apoA-I with peripheral cells produces through mechanisms that are still poorly understood the mobilization of intracellular cholesterol depots toward plasma membrane. In macrophages, these mechanisms seem to be related to the modulation of the activity of acyl-CoA cholesterol acyltransferase (ACAT), the enzyme responsible for the intracellular cholesterol ester biosynthesis that is stored in lipid droplets. The activation of ACAT and the accumulation of lipid droplets play a key role in the transformation of macrophages into foam cells, leading to the formation of atheroma or atherosclerotic plaque. ApoA-I Helsinki (or ?K107) is a natural apoA-I variant with a lysine deletion in the central protein region, carriers of which have increased atherosclerosis risk. We herein show that treatment of cultured RAW macrophages or CHOK1 cells with ?K107, but not with wild-type apoA-I or a variant containing a similar deletion at the C-terminal region (?K226), lead to a marked increase (more than 10 times) in the intracellular ACAT1 protein level as detected by western blot analysis. However, we could only detect a slight increase in cholesteryl ester produced by ?K107 mainly when Chol loading was supplied by low-density lipoprotein (LDL). Although a similar choline-phospholipid efflux is evoked by these apoA-I variants, the change in phosphatidylcholine/sphyngomyelin distribution produced by wild-type apoA-I is not observed with either ?K107 or ?K226.  相似文献   
85.
To investigate the intervention therapy effect on the growth of malignant melanoma, we have made an observation of expression levels of Ang2 in malignant melanoma cells, which was transduced by small interfering RNA (Ang2-siRNA) of Ang2 in vitro and in vivo. We successfully constructed Ang2-siRNA lent virus, and constructed nude mice model by transplanting malignant melanoma. Ang2-siRNA lent virus inhibited Ang2 mRNA of malignant melanoma in vitro and in vivo, and inhibited malignant melanoma tumor growth at the same time. Ang2-siRNA lent virus can interfere expression levels of Ang2 in malignant melanoma cells, inhibit tumor growth, and silent Ang2 gene expression, which may pave a new way for clinical gene therapy of malignant melanoma.  相似文献   
86.
Glioblastoma multiforme (GBM) cells are characterised by their extreme chemoresistance. The activity of multiple‐drug resistance (MDR) transporters that extrude antitumor drugs from cells plays the most important role in this phenomenon. To date, the mechanism controlling the expression and activity of MDR transporters is poorly understood. Activity of the enzyme ecto‐5′‐nucleotidase (CD73) in tumor cells, which hydrolyses AMP to adenosine, has been linked to immunosuppression and prometastatic effects in breast cancer and to the proliferation of glioma cells. In this study, we identify a high expression of CD73 in surgically resected samples of human GBM. In primary cultures of GBM, inhibition of CD73 activity or knocking down its expression by siRNA reversed the MDR phenotype and cell viability was decreased up to 60% on exposure to the antitumoral drug vincristine. This GBM chemosensitization was caused by a decrease in the expression and activity of the multiple drug associated protein 1 (Mrp1), the most important transporter conferring multiple drug resistance in these cells. Using pharmacological modulators, we have recognized the adenosine A3 receptor subtype in mediation of the chemoresistant phenotype in these cells. In conclusion, we have determined that the activity of CD73 to trigger adenosine signaling sustains chemoresistant phenotype in GBM cells. J. Cell. Physiol. 228: 602–608, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
87.
LL-37 is an antimicrobial peptide produced by human cells that can down-regulate the lipopolysaccharide-induced innate immune responses and up-regulate double-stranded (ds) RNA-induced innate responses through Toll-like receptor 3 (TLR3). The murine LL-37 ortholog, mCRAMP, also inhibited lipopolysaccharide-induced responses, but unlike LL-37, it inhibited viral-induced responses in mouse cells. A fluorescence polarization assay showed that LL-37 was able to bind dsRNA better than mCRAMP. In the human lung epithelial cell line BEAS-2B, LL-37, but not mCRAMP, colocalized with TLR3, and the colocalization was increased in the presence of dsRNA. The presence of poly(I:C) increased the accumulation of LL-37 in Rab5 endosomes. Signaling by cells induced with both LL-37 and poly(I:C) was sensitive to inhibitors that affect clathrin-independent trafficking, whereas signaling by poly(I:C) alone was not, suggesting that the LL-37-poly(I:C) complex trafficked to signaling endosomes by a different mechanism than poly(I:C) alone. siRNA knockdown of known LL-37 receptors identified that FPRL1 was responsible for TLR3 signaling induced by LL-37-poly(I:C). These results show that LL-37 and mCRAMP have different activities in TLR3 signaling and that LL-37 can redirect trafficking of poly(I:C) to effect signaling by TLR3 in early endosomes in a mechanism that involves FPRL1.  相似文献   
88.
Mild, mitochondrial uncoupling increases energy expenditure and can reduce the generation of reactive oxygen species (ROS). Activation of cellular, adaptive stress response pathways can result in an enhanced capacity to reduce oxidative damage. Together, these strategies target energy imbalance and oxidative stress, both underlying factors of obesity and related conditions such as type 2 diabetes. Here we describe a metabolomics-driven effort to uncover the anti-obesity mechanism(s) of xanthohumol (XN), a prenylated flavonoid from hops. Metabolomics analysis of fasting plasma from obese, Zucker rats treated with XN revealed decreases in products of dysfunctional fatty acid oxidation and ROS, prompting us to explore the effects of XN on muscle cell bioenergetics. At low micromolar concentrations, XN acutely increased uncoupled respiration in several different cell types, including myocytes. Tetrahydroxanthohumol also increased respiration, suggesting electrophilicity did not play a role. At higher concentrations, XN inhibited respiration in a ROS-dependent manner. In myocytes, time course metabolomics revealed acute activation of glutathione recycling and long term induction of glutathione synthesis as well as several other changes indicative of short term elevated cellular stress and a concerted adaptive response. Based on these findings, we hypothesize that XN may ameliorate metabolic syndrome, at least in part, through mitochondrial uncoupling and stress response induction. In addition, time course metabolomics appears to be an effective strategy for uncovering metabolic events that occur during a stress response.  相似文献   
89.
Surfactin, a bacterial amphiphilic lipopeptide is attracting more and more attention in view of its bioactive properties which are in relation with its ability to interact with lipids of biological membranes. In this work, we investigated the effect of surfactin on membrane structure using model of membranes, vesicles as well as supported bilayers, presenting coexistence of fluid-disordered (DOPC) and gel (DPPC) phases. A range of complementary methods was used including AFM, ellipsometry, dynamic light scattering, fluorescence measurements of Laurdan, DPH, calcein release, and octadecylrhodamine B dequenching. Our findings demonstrated that surfactin concentration is critical for its effect on the membrane. The results suggest that the presence of rigid domains can play an essential role in the first step of surfactin insertion and that surfactin interacts both with the membrane polar heads and the acyl chain region. A mechanism for the surfactin lipid membrane interaction, consisting of three sequential structural and morphological changes, is proposed. At concentrations below the CMC, surfactin inserted at the boundary between gel and fluid lipid domains, inhibited phase separation and stiffened the bilayer without global morphological change of liposomes. At concentrations close to CMC, surfactin solubilized the fluid phospholipid phase and increased order in the remainder of the lipid bilayer. At higher surfactin concentrations, both the fluid and the rigid bilayer structures were dissolved into mixed micelles and other structures presenting a wide size distribution.  相似文献   
90.
Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号