首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4269篇
  免费   265篇
  4534篇
  2022年   28篇
  2021年   40篇
  2020年   19篇
  2019年   27篇
  2018年   42篇
  2017年   43篇
  2016年   63篇
  2015年   111篇
  2014年   131篇
  2013年   242篇
  2012年   197篇
  2011年   186篇
  2010年   123篇
  2009年   111篇
  2008年   227篇
  2007年   227篇
  2006年   259篇
  2005年   198篇
  2004年   224篇
  2003年   198篇
  2002年   211篇
  2001年   142篇
  2000年   141篇
  1999年   112篇
  1998年   64篇
  1997年   50篇
  1996年   47篇
  1995年   42篇
  1994年   27篇
  1993年   42篇
  1992年   79篇
  1991年   78篇
  1990年   70篇
  1989年   69篇
  1988年   77篇
  1987年   61篇
  1986年   57篇
  1985年   37篇
  1984年   45篇
  1983年   42篇
  1982年   27篇
  1981年   23篇
  1980年   30篇
  1979年   38篇
  1978年   29篇
  1977年   25篇
  1976年   19篇
  1975年   19篇
  1974年   21篇
  1973年   20篇
排序方式: 共有4534条查询结果,搜索用时 15 毫秒
131.
Bacteria have the remarkable ability to communicate as a group in what has become known as quorum sensing (QS), and this trait has been associated with important bacterial phenotypes, such as virulence and biofilm formation. Bacteria also have an incredible ability to evolve resistance to all known antimicrobials. Hence, although inhibition of QS has been hailed as a means to reduce virulence in a manner that is impervious to bacterial resistance mechanisms, this approach is unlikely to be a panacea. Here we review the evidence that bacteria can evolve resistance to quorum-quenching compounds.  相似文献   
132.
133.
Hyperthermia has long been known as a radio‐sensitizing agent that displays anti‐tumor effects, and has been developed as a therapeutic application. The mechanisms of hyperthermia‐induced radio‐sensitization are highly associated with inhibition of DNA repair. Our investigations aimed to show how hyperthermia inactivate homologous recombination repair in the process of sensitizing cells to ionizing radiation by using a series of DNA repair deficient Chinese Hamster cells. Significant differences in cellular toxicity attributable to hyperthermia at and above 42.5°C were observed. In wild‐type and non‐homologous end joining repair mutants, cells in late S phase showed double the amount heat‐induced radio‐sensitization effects of G1‐phase cells. Both radiation‐induced DNA double strand breaks and chromatin damage resulting from hyperthermia exposure was measured to be approximately two times higher in G2‐phase cells than G0/G1 cells. Additionally, G2‐phase cells took approximately two times as long to repair DNA damage over time than G0/G1‐phase cells. To supplement these findings, radiation‐induced Rad51 foci formations at DNA double strand break sites were observed to gradually dissociate in response to the temperature and time of hyperthermia exposure. Dissociated Rad51 proteins subsequently re‐formed foci at damage sites with time, and occurred in a trend also related to temperature and time of hyperthermia exposure. These findings suggest Rad51's dissociation and subsequent reformation at DNA double strand break sites in response to varying hyperthermia conditions plays an important role in hyperthermia‐induced radio‐sensitization. J. Cell. Physiol. 228: 1473–1481, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
134.
135.
Taq I-generated HLA-DQrestriction fragment length polymorphism was examined in Japanese patients with narcolepsy. All patients were DR2 positive and shared a 6.0 kb fragment, although this fragment was found only in 54 % of the healthy DR2-positive Japanese. This finding added the DQ gene to the list of candidates for the possible narcolepsy-susceptibility gene. In contrast, there was no complete association between narcolepsy and DXrestriction fragment length polymorphism. These findings suggest that a narcolepsy-susceptibility gene is located closer to the DQ locus than to the DX locus.  相似文献   
136.
137.
Yeast cells can respond and adapt to osmotic stress. In our attempt to clarify the molecular mechanisms of cellular responses to osmotic stress, we cloned seven cDNAs for hyperosmolarity-responsive (HOR) genes from Saccharomyces cerevisiae by a differential screening method. Structural analysis of the clones revealed that those designated HOR1, HORS, HOR4, HOR5 and HOR6 encoded glycerol-3-phosphate dehydrogenase (Gpd1p), glucokinase (Glklp), hexose transporter (Hxtlp), heat-shock protein 12 (Hsp12p) and Na+, K+, Li+-ATPase (Enalp), respectively. HOR2 and HOR7 corresponded to novel genes. Gpdlp is a key enzyme in the synthesis of glycerol, which is a major osmoprotectant in S. cerevisiae. Cloning of HOR1/GPD1 as a HOR gene indicates that the accumulation of glycerol in yeast cells under hyperosmotic stress is, at least in part, caused by an increase in the level of GPDH protein. We performed a series of Northern blot analyses using HOR cDNAs as probes and RNAs prepared from cells grown under various conditions and from various mutant cells. The results suggested that all the HOR genes are regulated by common signal transduction pathways. However, the fact that they exhibited certain distinct responses indicated that they might also be regulated by specific pathways in addition to the common pathways. Ca2+ seemed to be involved in the signaling systems. In addition, Hog1p, one of the MAP kinases in yeast, appeared to be involved in the regulation of expression of HOR genes, although its function seemed to be insufficient for the overall regulation of expression of these genes.  相似文献   
138.
139.
Interactions between dendritic cells (DCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, most likely play a key role in anti-mycobacterial immunity. We have recently shown that M. tuberculosis binds to and infects DCs through ligation of the DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and that M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) inhibits binding of the bacilli to the lectin, suggesting that ManLAM might be a key DC-SIGN ligand. In the present study, we investigated the molecular basis of DC-SIGN ligation by LAM. Contrary to what was found for slow growing mycobacteria, such as M. tuberculosis and the vaccine strain Mycobacterium bovis bacillus Calmette-Guérin, our data demonstrate that the fast growing saprophytic species Mycobacterium smegmatis hardly binds to DC-SIGN. Consistent with the former finding, we show that M. smegmatis-derived lipoarabinomannan, which is capped by phosphoinositide residues (PILAM), exhibits a limited ability to inhibit M. tuberculosis binding to DC-SIGN. Moreover, using enzymatically demannosylated and chemically deacylated ManLAM molecules, we demonstrate that both the acyl chains on the ManLAM mannosylphosphatidylinositol anchor and the mannooligosaccharide caps play a critical role in DC-SIGN-ManLAM interaction. Finally, we report that DC-SIGN binds poorly to the PILAM and uncapped AraLAM-containing species Mycobacterium fortuitum and Mycobacterium chelonae, respectively. Interestingly, smooth colony-forming Mycobacterium avium, in which ManLAM is capped with single mannose residues, was also poorly recognized by the lectin. Altogether, our results provide molecular insight into the mechanisms of mycobacteria-DC-SIGN interaction, and suggest that DC-SIGN may act as a pattern recognition receptor and discriminate between Mycobacterium species through selective recognition of the mannose caps on LAM molecules.  相似文献   
140.
We present the nucleotide sequences of four members of the six-member human salivary prolinerich protein (PRP) gene family. The four genes are PRB1 and PRB2, which encode basic PRPs, and PRB3 and PRB4, which encode glycosylated PRPs. Each PRB gene is approximately 4.0 kb in length and contains four exons, the third of which is entirely composed of 63-bp tandem repeats and encodes the proline-rich portion of the protein products. Exon 3 contains different numbers of tandem repeats in the different PRB genes. Variation in the numbers of these repeats is also responsible for length variations in different alleles of the PRB genes. We have determined a probable evolutionary history of the human PRP gene family by comparing the nucleotide sequences of the six PRP genes. The present-day six PRP loci probably evolved from a single ancestral gene by four sequential gene duplications, leading to six genes that fall into three subsets, each consisting of two genes. During this evolutionary process, multiple rearrangements and gene conversion occurred mainly in the region from the 3 end of IVS2 and the 3 end of exon 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号