首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   597篇
  免费   39篇
  国内免费   3篇
  639篇
  2022年   6篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   9篇
  2016年   17篇
  2015年   22篇
  2014年   23篇
  2013年   40篇
  2012年   40篇
  2011年   37篇
  2010年   24篇
  2009年   29篇
  2008年   32篇
  2007年   41篇
  2006年   44篇
  2005年   47篇
  2004年   34篇
  2003年   33篇
  2002年   38篇
  2001年   4篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   8篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   2篇
  1991年   3篇
  1989年   6篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   8篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有639条查询结果,搜索用时 0 毫秒
61.
62.
Summary Non-histone chromatin proteins prepared from the livers of estrogen-treated and nontreated male chickens were compared by reverse-phase high performance liquid chromatography (RP-HPLC), followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results revealed that the hormone-treated male liver chromatin contained a specific protein corresponding to the vitellogenin-specific protein previously purified from the liver of egg-laying hens (Nakayama 1985). The chicken protein, purified further by gel-filtration high performance liquid chromatography (GF-HPLC), showed specific binding activity to DNA fragments carrying a part of the vitellogenin gene. On the basis of similarities in the elution patterns from GF-HPLC and RP-HPLC as well as in the mobility on SDS-PAGE, we concluded that this hormone-induced protein in the male chicken liver was identical to the vitellogenin-specific protein identified in the hen liver, and assumed it to be a specific regulatory protein for the vitellogenin gene expression. The amino acid composition of this chicken protein has been determined.  相似文献   
63.
β-Glucosidase (BGL1) from Aspergillus oryzae was efficiently produced in recombinant A. oryzae using sodM promoter-mediated expression system. The yield of BGL1 was 960 mg/l in liquid culture, which is 20-fold higher than the yield of BGL1 produced using the yeast Saccharomyces cerevisiae. Recombinant BGL1 converted isoflavone glycosides into isoflavone aglycones more efficiently than β-glucosidase from almond. In addition, BGL1 produced isoflavone aglycones even in the presence of the insoluble form of isoflavone glycosides.  相似文献   
64.
Endometrial cancer is the most common gynecologic malignancy and is associated with increased morbidity each year, including young people. However, its mechanisms of proliferation and progression are not fully elucidated. It is well known that abnormal glycosylation is involved in oncogenesis, and fucosylation is one of the most important types of glycosylation. In particular, fucosyltransferase 8 (FUT8) is the only FUT responsible for α1, 6-linked fucosylation (core fucosylation), and it is involved in various physiological as well as pathophysiological processes, including cancer biology. Therefore, we aimed to identify the expression of FUT8 in endometrial endometrioid carcinoma and investigate the effect of the partial silencing of the FUT8 gene on the cell proliferation of Ishikawa cells, an epithelial-like endometrial cancer cell line. Quantitative real-time PCR analysis showed that FUT8 gene expression was significantly elevated in the endometrial endometrioid carcinoma, compared to the normal endometrium. The immunostaining of FUT8 and Ulex europaeus Agglutinin 1 (UEA-1), a kind of lectin family specifically binding to fucose, was detected endometrial endometrioid carcinoma. The proliferation assay showed FUT8 partial knockdown by transfection of siRNA significantly suppressed the proliferation of Ishikawa cells, concomitant with the upregulation in the gene expressions associated with the interesting pathways associated with de-ubiquitination, aspirin trigger, mesenchymal-epithelial transition (MET) et al. It was suggested that the core fucosylation brought about by FUT8 might be involved in the proliferation of endometrial endometrioid carcinoma cells.  相似文献   
65.
Brown macroalgae are a sustainable and promising source for bioethanol production because they are abundant in ocean ecosystems and contain negligible quantities of lignin. Brown macroalgae contain cellulose, hemicellulose, mannitol, laminarin, and alginate as major carbohydrates. Among these carbohydrates, brown macroalgae are characterized by high levels of alginate and mannitol. The direct bioconversion of alginate and mannitol into ethanol requires extensive bioengineering of assimilation processes in the standard industrial microbe Saccharomyces cerevisiae. Here, we constructed an alginate-assimilating S. cerevisiae recombinant strain by genome integration and overexpression of the genes encoding endo- and exo-type alginate lyases, DEH (4-deoxy-l-erythro-5-hexoseulose uronic acid) transporter, and components of the DEH metabolic pathway. Furthermore, the mannitol-metabolizing capacity of S. cerevisiae was enhanced by prolonged culture in a medium containing mannitol as the sole carbon source. When the constructed strain AM1 was anaerobically cultivated in a fermentation medium containing 6% (w/v) total sugars (approximately 1:2 ratio of alginate/mannitol), it directly produced ethanol from alginate and mannitol, giving 8.8 g/L ethanol and yields of up to 32% of the maximum theoretical yield from consumed sugars. These results indicate that all major carbohydrates of brown macroalgae can be directly converted into bioethanol by S. cerevisiae. This strain and system could provide a platform for the complete utilization of brown macroalgae.  相似文献   
66.
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.  相似文献   
67.
Organophosphorus compounds (OPs) such as pesticides, fungicides, and herbicides are highly toxic but are nevertheless extensively used worldwide. To detect OPs, we constructed a yeast strain that co-displays organophosphorus hydrolase (OPH) and enhanced green fluorescent protein (EGFP) on the cell surface using a Flo1p anchor system. OP degradation releases protons and causes a change in pH. This pH change results in structural deformation of EGFP, which triggers quenching of its fluorescence, thereby making this cell useful for visual detection of OPs. Fluorescence microscopy confirmed the high-intensity fluorescence displayed by EGFP on the cell surface. The yeast strain possessed sufficient OPH hydrolytic activities for degrading OPs, as measured by incubation with 1 mM paraoxon for 24 h at 30°C. In addition, with 20 mM paraoxon at 30°C, fluorescence quenching of EGFP on the single yeast cell was observed within 40 s in a microchamber chip. These observations suggest that engineered yeast cells are suitable for simultaneous degradation and visual detection of OPs.  相似文献   
68.

Background  

Interleukin-4 (IL4) is a secreted immunoregulatory cytokine critically involved in host protection from parasitic helminths [1]. Reasoning that helminths may have evolved mechanisms to antagonize IL4 to maximize their dispersal, we explored mammalian IL4 evolution.  相似文献   
69.
70.
A series of 2-phenylaliphatic-substituted androsta-1,4-diene-3,17-diones (6) as well as their androstenedione derivatives (5) were synthesized as aromatase inhibitors to gain insights of structure–activity relationships of varying the alkyl moiety (C1 to C4) of the 2-phenylaliphatic substituents as well as introducing a methyl- or trifluoromethyl function to p-position of a phenethyl moiety to the inhibitory activity. The inhibitors examined showed a competitive type inhibition. The 2-phenpropylandrosta-1,4-diene 6c was the most powerful inhibitor (Ki: 16.1 nM) among them. Compounds 6c along with the phenethyl derivative 6b caused a time-dependent inactivation of aromatase (kinact: 0.0293 and 0.0454 min?1 for 6b and 6c, respectively). The inactivation was prevented by the substrate androstenedione, and no significant effect of l-cysteine on the inactivation was observed in each case. Molecular docking of the phenpropyl compound 6c to aromatase was conducted to demonstrate that the phenpropyl group orients to a hydrophobic binding pocket in the active site to result in the formation of thermodynamically stable enzyme–inhibitor complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号