首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1745篇
  免费   106篇
  国内免费   3篇
  2022年   9篇
  2021年   24篇
  2020年   13篇
  2019年   19篇
  2018年   22篇
  2017年   20篇
  2016年   32篇
  2015年   38篇
  2014年   51篇
  2013年   103篇
  2012年   82篇
  2011年   82篇
  2010年   56篇
  2009年   54篇
  2008年   94篇
  2007年   80篇
  2006年   89篇
  2005年   79篇
  2004年   56篇
  2003年   67篇
  2002年   74篇
  2001年   61篇
  2000年   56篇
  1999年   59篇
  1998年   30篇
  1997年   22篇
  1996年   14篇
  1995年   15篇
  1994年   8篇
  1993年   13篇
  1992年   36篇
  1991年   34篇
  1990年   32篇
  1989年   37篇
  1988年   18篇
  1987年   16篇
  1986年   26篇
  1985年   23篇
  1984年   23篇
  1983年   22篇
  1982年   11篇
  1981年   13篇
  1980年   15篇
  1979年   19篇
  1978年   12篇
  1977年   8篇
  1974年   11篇
  1972年   14篇
  1968年   8篇
  1967年   8篇
排序方式: 共有1854条查询结果,搜索用时 15 毫秒
121.
Changes in the levels of thiamin-binding globulin and thiamin in wheat seeds during maturation and germination were studied. The thiamin-binding activity of the seed proteins increased with seed development after flowering. The thiamin content of the seeds also increased with development. Thiamin-binding activity decreased during seed germination. On the other hand, immunological analysis using an antibody directed against the thiamin-binding protein isolated from wheat seeds showed that the thiamin-binding globulin accumulated in the aleurone layer of the seeds during maturation, and then the protein was degraded and disappeared during seed germination. These results suggested that the thiamin-binding globulin of wheat seeds was synthesized and accumulated in the aleurone layer of the seeds with seed development, similar to the thiamin-binding albumin in sesame seeds, and that thiamin bound to the thiamin-binding globulin in the dormant wheat seeds for germ growth during germination.  相似文献   
122.
Three novel lipoxygenase inhibitors, tetrapetalone B (2, C(28)H(35)NO(9)), C (3, C(26)H(34)NO(8)), and D (4, C(28)H(36)NO(10)), were isolated from a culture broth of Streptomyces sp. USF-4727 that produced a lipoxygenase inhibitor tetrapetalone A (1) simultaneously. Each chemical structure was revealed by spectroscopic evidence, this suggests that these three compounds are structurally related to 1. They had a tetracyclic skeleton and a beta-D-rhodinosyl moiety. Tetrapetalone B, C, and D inhibited soybean lipoxygenase with IC(50): 320, 360, and 340 microM respectively.  相似文献   
123.
Plants take up inorganic nitrogen and store it unchanged or convert it to organic forms. The nitrogen in such organic compounds is stoichiometrically recoverable by the Kjeldahl method. The sum of inorganic nitrogen and Kjeldahl nitrogen has long been known to equal the total nitrogen in plants. However, in our attempt to study the mechanism of nitrogen dioxide (NO2) metabolism, we unexpectedly discovered that about one-third of the total nitrogen derived from 15N-labeled NO2 taken up by Arabidopsis thaliana (L.) Heynh. plants was converted to neither inorganic nor Kjeldahl nitrogen, but instead to an as yet unknown nitrogen compound(s). We here refer to this nitrogen as unidentified nitrogen (UN). The generality of the formation of UN across species, nitrogen sources and cultivation environments for plants has been shown as follows. Firstly, all of the other 11 plant species studied were found to form the UN in response to fumigation with 15NO2. Secondly, tobacco (Nicotiana tabacum L.) plants fed with 15N-nitrate appeared to form the UN. And lastly, the leaves of naturally fed vegetables, grass and roadside trees were found to possess the UN. In addition, the UN appeared to comprise a substantial proportion of total nitrogen in these plant species. Collectively, all of our present findings imply that there is a novel nitrogen mechanism for the formation of UN in plants. Based on the analyses of the exhaust gas and residue fractions of the Kjeldahl digestion of a plant sample containing the UN, probable candidates for compounds that bear the UN were deduced to be those containing the heat-labile nitrogen–oxygen functions and those recalcitrant to Kjeldahl digestion, including organic nitro and nitroso compounds. We propose UN-bearing compounds may provide a chemical basis for the mechanism of the reactive nitrogen species (RNS), and thus that cross-talk may occur between UN and RNS metabolisms in plants. A mechanism for the formation of UN-bearing compounds, in which RNS are involved as intermediates, is proposed. The important broad impact of this novel nitrogen metabolism, not only on the general physiology of plants, but also on plant substances as human and animal food, and on plants as an integral part of the global environment, is discussed.Abbreviations NO Nitric oxide - NO2 Nitrogen dioxide - RNS Reactive nitrogen species - UN Unidentified nitrogen - TNNAT, RNNAT, INNAT and UNNAT Total, Kjeldahl, inorganic and unidentified nitrogen in naturally fed plants, respectively - TNNIT, RNNIT, INNIT and UNNIT Total, Kjeldahl, inorganic and unidentified nitrogen derived from nitrate, respectively - TNNO2, RNNO2, INNO2 and UNNO2 Total, Kjeldahl, inorganic and unidentified nitrogen derived from NO2, respectively  相似文献   
124.
To characterize the "portal signal" during physiological glucose delivery, liver glycogen was measured in unrestrained rats during portal (Po) and peripheral (Pe) constant-rate infusion, with minimal differences in hepatic glucose load (HGL) and portal insulin between the delivery routes. Hepatic blood flows were measured by Doppler flowmetry during open surgery. Changes in hepatic glucose, portal insulin, glucagon, lactate, and free fatty acid concentrations were generally similar in either delivery except for glucagon at 4 h. Hepatic glycogen, however, increased continuously in Po and was higher than Pe at 8 and 24 h, although it decreased to the level of Pe upon the removal of Po at 8 h. There was a near-linear relationship between hepatic glycogen and HGL in either delivery, with the slope being twice as high in Po and the intercepts converging to basal HGL. The hepatic response to Po did not alter upon 80% replacement by Pe. These results suggest that negative arterial-portal glucose gradients increase the rate of hepatic glycogen synthesis against the incremental HGL in an all-or-nothing mode.  相似文献   
125.
Despite recent progress in sequencing the complete genome of rice (Oryza sativa), the proteome of this species remains poorly understood. To extend our knowledge of the rice proteome, the subcellular compartments, which include plasma membranes (PM), vacuolar membranes (VM), Golgi membranes (GM), mitochondria (MT), and chloroplasts (CP), were purified from rice seedlings and cultured suspension cells. The proteins of each of these compartments were then systematically analyzed using two-dimensional (2D) electrophoresis, mass spectrometry, and Edman sequencing, followed by database searching. In all, 58 of the 464 spots detected by 2D electrophoresis in PM, 43 of the 141 spots in VM, 46 of the 361 spots in GM, 146 in the 672 spots in MT, and 89 of the 252 spots in CP could be identified by this procedure. The characterized proteins were found to be involved in various processes, such as respiration and the citric acid cycle in MT; photosynthesis and ATP synthesis in CP; and antifungal defense and signal systems in the membranes. Edman degradation revealed that 60–98% of N-terminal sequences were blocked, and the ratios of blocked to unblocked proteins in the proteomes of the various subcellular compartments differed. The data on the proteomes of subcellular compartments in rice will be valuable for resolving questions in functional genomics as well as for genome-wide exploration of plant function.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. Jürgens  相似文献   
126.
It has been reported that various structural and functional changes occur on the surface of the plasma membrane of the ovum and embryo during fertilisation and cleavage in preparation for implantation. Glycoproteins are thought to be one of the factors in cell attachment. Thus, we investigated the changes in glycoprotein expression on the cell surface membrane of the mouse embryo by using lectins. Among seven types of lectin (ConA, WGA, UEA-I, MPA, LCA, DBA and PNA), the fluorescent intensities of ConA and WGA markedly increased from unfertilised ova to blastocysts. By quantitative analysis using immuno-scanning electron microscopy, the numbers of ConA-gold particles were small until 4-cell cleavage, but increased significantly at the blastocyst stage. In contrast, an increased number of WGA-gold particles was detected even at the 4-cell stage, and this increase continued to the blastocyst stage. From the above observations, we conclude that the numbers of sugar chains bound to both ConA andWGA increases with blastocyst formation and earlier expression is observed with WGA. The present study dearly shows that glycoproteins on the cell membrane surface of the mouse embryo quantitatively increase at the time of implantation, and the possibility has been indicated that glycoproteins are involved in intercellular recognition and adhesion between the embryo and endometrial epithelium.  相似文献   
127.
Prior studies have revealed that the sympathetic nervous system regulates the clinical and pathological manifestations of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model mediated by Th1 T cells. Although the regulatory role of catecholamines has been indicated in the previous works, it remained possible that other sympathetic neurotransmitters like neuropeptide Y (NPY) may also be involved in the regulation of EAE. Here we examined the effect of NPY and NPY receptor subtype-specific compounds on EAE, actively induced with myelin oligodendrocyte glycoprotein 35-55 in C57BL/6 mice. Our results revealed that exogenous NPY as well as NPY Y(1) receptor agonists significantly inhibited the induction of EAE, whereas a Y(5) receptor agonist or a combined treatment of NPY with a Y(1) receptor antagonist did not inhibit signs of EAE. These results indicate that the suppression of EAE by NPY is mediated via Y(1) receptors. Furthermore, treatment with the Y(1) receptor antagonist induced a significantly earlier onset of EAE, indicating a protective role of endogenous NPY in the induction phase of EAE. We also revealed a significant inhibition of myelin oligodendrocyte glycoprotein 35-55-specific Th1 response as well as a Th2 bias of the autoimmune T cells in mice treated with the Y(1) receptor agonist. Ex vivo analysis further demonstrated that autoimmune T cells are directly affected by NPY via Y(1) receptors. Taken together, we conclude that NPY is a potent immunomodulator involved in the regulation of the Th1-mediated autoimmune disease EAE.  相似文献   
128.
Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).  相似文献   
129.
The Rho family small GTPases play a crucial role in mediating cellular responses to stretch. However, it remains unclear how force is transduced to Rho signaling pathways. We investigated the effect of stretch on the activation and caveolar localization of RhoA and Rac1 in neonatal rat cardiomyocytes. In unstretched cardiomyocytes, RhoA and Rac1 were detected in both caveolar and non-caveolar fractions as assessed using detergent-free floatation analysis. Stretching myocytes for 4 min activated RhoA and Rac1. By 15 min of stretch, RhoA and Rac1 had dissociated from caveolae, and there was decreased coprecipitation of RhoA and Rac1 with caveolin-3. To determine whether compartmentation of RhoA and Rac1 within caveolae was necessary for stretch signaling, we disrupted caveolae with methyl beta-cyclodextrin (MbetaCD). Treatment with 5 mm MbetaCD for 1 h dissociated both RhoA and Rac1 from caveolae. Under this condition, stretch failed to activate RhoA or Rac1. Stretch-induced actin cytoskeletal organization was concomitantly impaired. Interestingly the ability of stretch to activate extracellular signal-regulated kinase (ERK) was unaffected by MbetaCD treatment, but ERK translocation to the nucleus was impaired. Stretch-induced hypertrophy was also inhibited. Actin cytoskeletal disruption with cytochalasin-D also prevented stretch from increasing nuclear ERK, whereas actin polymerization with jasplakinolide restored nuclear translocation of activated ERK in the presence of MbetaCD. We suggest that activation of RhoA or Rac1, localized in a caveolar compartment, is essential for sensing externally applied force and transducing this signal to the actin cytoskeleton and ERK translocation.  相似文献   
130.
Procarbazine [N-isopropyl-alpha-(2-methylhydrazino)-p-toluamide], a hydrazine derivative, which has been shown to have effective antineoplastic activity, induces cancer in some experimental animals and humans. To clarify a new mechanism for its carcinogenic effect, we examined DNA damage induced by procarbazine in the presence of metal ion, using 32P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. Procarbazine plus Cu(II) induced piperidine-labile and formamidopyrimidine-DNA glycosylase-sensitive lesions at the 5'-ACG-3' sequence, complementary to a hotspot of the p53 gene, and the 5'-TG-3' sequence. Catalase partially inhibited DNA damage, suggesting that not only H(2)O(2) but also other reactive species are involved. Procarbazine plus Cu(II) significantly increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, which was completely inhibited by calatase. Electron spin resonance spin-trapping experiments revealed that methyl radicals were generated from procarbazine and Cu(II). On the basis of these findings, it is considered that procarbazine causes DNA damage through non-enzymatic formation of the Cu(I)-hydroperoxo complex and methyl radicals. In conclusion, in addition to alkylation, oxidative DNA damage may play important roles in not only antitumor effects but also mutagenesis and carcinogenesis induced by procarbazine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号