首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1013篇
  免费   61篇
  1074篇
  2023年   6篇
  2022年   12篇
  2021年   20篇
  2020年   12篇
  2019年   22篇
  2018年   22篇
  2017年   25篇
  2016年   26篇
  2015年   33篇
  2014年   49篇
  2013年   49篇
  2012年   75篇
  2011年   75篇
  2010年   53篇
  2009年   41篇
  2008年   50篇
  2007年   54篇
  2006年   43篇
  2005年   60篇
  2004年   39篇
  2003年   28篇
  2002年   41篇
  2001年   25篇
  2000年   19篇
  1999年   19篇
  1998年   12篇
  1997年   7篇
  1996年   12篇
  1995年   5篇
  1994年   5篇
  1993年   13篇
  1992年   13篇
  1991年   9篇
  1990年   8篇
  1989年   10篇
  1988年   6篇
  1987年   12篇
  1986年   2篇
  1985年   4篇
  1983年   3篇
  1982年   9篇
  1981年   10篇
  1980年   6篇
  1979年   12篇
  1978年   6篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1964年   1篇
  1944年   1篇
排序方式: 共有1074条查询结果,搜索用时 0 毫秒
61.
We have previously reported the identification of a gene from Mycobacterium tuberculosis, H37Rv, which on the basis of its nucleotide sequence encoded a protein product of 38 kDa. This 38-Kda mycobacterial protein designated as VirS exhibits homology with the VirF protein of Shigella, the VirFy protein of Yersinia and the Cfad, Rns and FapR proteins from various enterotoxigenic Escherichia coli strains. In this communication, we show the close sequence and structural similarities of the VirS protein with VirF, VirFy, Cfad, Rns and FapR and describe the results of our studies on the characterization of the virS gene promoter and its expression in E. coli and mycobacteria. virS was present exclusively in the species belonging to the M. tuberculosis complex as revealed by Southern blot and PCR analysis. Our findings suggest the involvement of virS in the regulation of pathogenesis of M. tuberculosis.  相似文献   
62.
Induced production of chitinase during bioconversion of starch industry wastewater (SIW) to Bacillus thuringiensis var. kurstaki HD-1 (Btk) based biopesticides was studied in shake flask as well as in computer-controlled fermentors. SIW was fortified with different concentrations (0%; 0.05%; 0.1%; 0.2%; 0.3% w/v) of colloidal chitin and its consequences were ascertained in terms of Btk growth (total cell count and viable spore count), chitinase, protease and amylase activities and entomotoxicity. At optimum concentration of 0.2% w/v colloidal chitin, the entomotoxicity of fermented broth and suspended pellet was enhanced from 12.4 × 109 (without chitin) to 14.4 × 109 SBU/L and from 18.2 × 109 (without chitin) to 25.1 × 109 SBU/L, respectively. Further, experiments were conducted for Btk growth in a computer-controlled 15 L bioreactor using SIW as a raw material with (0.2% w/v chitin, to induce chitinase) and without fortification of colloidal chitin. It was found that the total cell count, spore count, delta-endotoxin concentration (alkaline solubilised insecticidal crystal proteins), amylase and protease activities were reduced whereas the entomotoxicity and chitinase activity was increased with chitin fortification. The chitinase activity attained a maximum value at 24 h (15 mU/ml) and entomotoxicity of suspended pellet reached highest (26.7 × 109 SBU/L) at 36 h of fermentation with chitin supplementation of SIW. In control (without chitin), the highest value of entomotoxicity of suspended pellet (20.5 × 109 SBU/L) reached at 48 h of fermentation. A quantitative synergistic action of delta-endotoxin concentration, spore concentration and chitinase activity on the entomotoxicity against spruce budworm larvae was observed.  相似文献   
63.
64.
An elevated level of homocysteine (Hcy) limits the growth and induces apoptosis. However, the mechanism of Hcy-induced programmed cell death in endothelial cells is largely unknown. We hypothesize that Hcy induces intracellular reactive oxygen species (ROS) production that leads to the loss of transmembrane mitochondrial potential (Deltapsi(m)) accompanied by the release of cytochrome-c from mitochondria. Cytochrome-c release contributes to caspase activation, such as caspase-9, caspase-6, and caspase-3, which results in the degradation of numerous nuclear proteins including poly (ADP-ribose) polymerase (PARP), which subsequently leads to the internucleosomal cleavage of DNA, resulting cell death. In this study, rat heart microvascular endothelial cells (MVEC) were treated with different doses of Hcy at different time intervals. Apoptosis was measured by DNA laddering and transferase-mediated dUTP nick-end labeling (TUNEL) assay. ROS production and MP were determined using fluorescent probes (2,7-dichlorofluorescein (DCFH-DA) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzamidazolocarbocyanin iodide (JC-1), respectively, by confocal microscopy. Differential gene expression for apoptosis was analyzed by cDNA array. The results showed that Hcy-mediated ROS production preceded the loss of MP, the release of cytochrome-c, and the activation of caspase-9 and -3. Moreover the Hcy treatment resulted in a decrease in Bcl(2)/Bax ratio, evaluated by mRNA levels. Caspase-9 and -3 were activated, causing cleavage of PARP, a hallmark of apoptosis and internucleosomal DNA fragmentation. The cytotoxic effect of Hcy was blocked by using small interfering RNA (siRNA)-mediated suppression of caspase-9 in MVEC. Suppressing the activation of caspase-9 inhibited the activation of caspase -3 and enhanced the cell viability and MP. Our data suggested that Hcy-mediated ROS production promotes endothelial cell death in part by disturbing MP, which results in subsequent release of cytochrome-c and activation of caspase-9 and 3, leading to cell death.  相似文献   
65.
Although elevated levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy) are associated with increased inflammation and vascular remodeling, the mechanism of Hcy-mediated inflammation and vascular remodeling is unclear. The matrix metalloproteinases (MMPs) and adhesion molecules play an important role in vascular remodeling. We hypothesized that HHcy induces inflammation by increasing adhesion molecules and matrix protein expression. Endothelial cells were supplemented with high methionine, and Hcy accumulation was measured by HPLC. Nitric oxide (NO) bioavailability was detected by a NO probe. The protein expression was measured by Western blot analysis. MMP-9 activity was detected by gelatin-gel zymography. We demonstrated that methionine supplement promoted upregulation of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) through increased Hcy accumulation. In addition, increased synthesis of collagen type-1 was also observed. MMP-9 gene expression and protein activity were increased in methionine supplement groups. 3-Deazaadenosine (DZA), an adenosine analogue, prevented high methionine-induced ICAM-1 and VCAM-1 expression and collagen type-1 synthesis. Transfection of endothelial cells with cystathionine-β-synthase (CBS) gene construct, which converts Hcy to cystathionine, reduced Hcy accumulation in high methionine-fed cells. CBS gene transfection reduced the inflammatory response, as evident by attenuated ICAM-1 and VCAM-1 expression. Furthermore, collagen type-1 expression and MMP-9 activity were dramatically attenuated with CBS gene transfection. These results suggested that methionine supplement increased Hcy accumulation, which was associated with inflammatory response and matrix remodeling such as collagen type-1 synthesis and MMP-9 activity. However, in vitro DZA and CBS gene therapy successfully treated the HHcy-induced inflammatory reaction in the methionine metabolism pathway. extracellular matrix; matrix metalloproteinase-9; intercellular cell adhesion molecule-1; vascular cell adhesion molecule-1; collagen type-1; hyperhomocysteinemia  相似文献   
66.
Curcumin, an important constituent of turmeric, is known for various biological activities, primarily due to its antioxidant mechanism. The present study focused on the antibacterial activity of curcumin I, a significant component of commercial curcumin, against four genera of bacteria, including those that are Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa). These represent prominent human pathogens, particularly in hospital settings. Our study shows the strong antibacterial potential of curcumin I against all the tested bacteria from Gram-positive as well as Gram-negative groups. The integrity of the bacterial membrane was checked using two differential permeabilization indicating fluorescent probes, namely, propidium iodide and calcein. Both the membrane permeabilization assays confirmed membrane leakage in Gram-negative and Gram-positive bacteria on exposure to curcumin I. In addition, scanning electron microscopy and fluorescence microscopy were employed to confirm the membrane damages in bacterial cells on exposure to curcumin I. The present study confirms the broad-spectrum antibacterial nature of curcumin I, and its membrane damaging property. Findings from this study could provide impetus for further research on curcumin I regarding its antibiotic potential against rapidly emerging bacterial pathogens.  相似文献   
67.
Kidney stone disease (KSD) is a major clinical problem imposing a large burden for both healthcare and economy globally. In India, the prevalence of kidney stone disease is rapidly increasing. This study aimed to evaluate the association between genetic defects in vitamin D receptor (VDR), calcium sensing receptor (CaSR) and claudin 14 (CLDN14) genes and kidney stone disease in patients from eastern India. We enrolled 200 consecutive kidney stone patients (age 18–60 years) (cases) and their corresponding sex and age matched 200 normal individuals (controls). To identify genetic variants responsible for KSD, we performed sequence analysis of VDR, CaSR and CLDN14 genes. Four non-synonymous (rs1801725, rs1042636, rs1801726 and rs2228570), one synonymous (rs219780) and three intronic single nucleotide polymorphisms (SNPs) (rs731236, rs219777 and rs219778) were identified. Genotype and allele frequency analysis of these SNPs revealed that, rs1801725 (Ala986Ser), rs1042636 (Arg990Gly) of CaSR gene and rs219778, rs219780 (Thr229Thr) of CLDN14 gene were significantly associated with KSD. Serum calcium levels were significantly higher in subjects carrying 986Ser allele and calcium excretion was higher in subjects bearing 990Gly allele. In conclusion, rs1801725, rs1042636, rs219778 and rs219780 SNPs were associated with kidney stone risk in patients from the eastern part of India.  相似文献   
68.
69.
A new family of tridentate ligands PhimpH (2-((2-phenyl-2-(pyridin-2-yl)hydazono)methyl)phenol), N-PhimpH (2-((2-phenyl-2-(pyridin-2-yl)hydrazono)methyl)napthalen-1-ol), Me-PhimpH (2-(1-(2-phenyl-2-(pyridine-2-yl)hydrazono)ethyl)phenol) have been synthesized and characterized. The ligands PhimpH and N-PhimpH after deprotonation react with manganese(II) and manganese(III) starting materials affording [Mn(Phimp)2] (1), [Mn(Phimp)2](ClO4) (2), [Mn(N-Phimp)2] (3), [Mn(N-Phimp)2](ClO4) (4). Complexes [Mn(Phimp)2] (1) and [Mn(N-Phimp)2] (3) convert to [Mn(Phimp)2]+ (cation of 2) and [Mn(N-Phimp)2]+ (cation of 4) respectively upon oxidation. Ligand Me-PhimpH stabilized only manganese(III) centre resulting [Mn(Me-Phimp)2](ClO4) (5). The molecular structures of [Mn(Phimp)2], 1 and [Mn(Phimp)2](ClO4), 2 were determined by single crystal X-ray diffraction. X-ray crystal structures of 1 and 2 have revealed the presence of distorted octahedral MnN4O2 coordination sphere having meridionally spanning ligands. Electrochemical studies for the complexes showed Mn(II)/Mn(III), (E1/2 = 0.14-0.40 V) and Mn(III)/Mn(IV), (E1/2 = 0.80-1.06 V) couples vs. Ag/AgCl. The redox properties were exploited to examine superoxide dismutase (SOD) activity using Mn(II)/Mn(III) couple. The complexes 1, 2, 4 and 5 have been revealed to catalyze effectively the dismutation of superoxide () in xanthine-xanthine oxidase-nitro blue tetrazolium assay and IC50 values were found to be 0.29, 0.39, 1.12 and 0.76 μM respectively. DNA interaction studies with complex 2 showed binding of DNA in a non-intercalative pathway. Complexes 1, 2 and 4 exhibited nuclease activity in presence of H2O2 and inhibition of activity was noted in presence of KI.  相似文献   
70.
Chikungunya fever is one of the reemerging vector-borne diseases. It has become a major global health problem especially in the developing countries. There are no vaccines or specific antiviral drugs available to date. This study reports small molecule inhibitors of envelope glycoprotein 2 (E2 glycoprotein) which are predicted based on Chikungunya virus–host interactions. E2 glycoprotein of Chikungunya virus interacts at 216 residue of the host receptor protein which plays a vital role in initiating infection. Understanding the structural aspects of E2 glycoprotein is crucial to develop specific inhibitors to prevent the virus binding from host receptors. In silico method was adopted to predict the sequence motifs of envelope protein, as the method like yeast two hybrid system is laborious, time consuming, and costly. The E2 glycoprotein structure of the Indian isolate was modeled using two templates (2XFC and 3JOC) and then validated. The class III PDZ domain binding motif was found to be identified at 213–216 amino acids. The corresponding peptide structures which recognize the PDZ domain binding motif were identified by the literature search and were used for generating five point pharmacophore model (ADDDR) containing acceptor, donor and aromatic ring features. Databases such as Asinex, TosLab and Maybridge were searched for the matches for the predicted pharmacophore model. Two compounds were identified as lead molecules as their glide score is?>?5?kcal/mol. Since the pharmacophore model is developed based on Chikungunya virus–host interaction, it can be used for designing promising antiviral lead compounds for the treatment of Chikungunya fever.An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:21  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号