首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1012篇
  免费   61篇
  2023年   6篇
  2022年   11篇
  2021年   20篇
  2020年   12篇
  2019年   22篇
  2018年   22篇
  2017年   25篇
  2016年   26篇
  2015年   33篇
  2014年   49篇
  2013年   49篇
  2012年   75篇
  2011年   75篇
  2010年   53篇
  2009年   41篇
  2008年   50篇
  2007年   54篇
  2006年   43篇
  2005年   60篇
  2004年   39篇
  2003年   28篇
  2002年   41篇
  2001年   25篇
  2000年   19篇
  1999年   19篇
  1998年   12篇
  1997年   7篇
  1996年   12篇
  1995年   5篇
  1994年   5篇
  1993年   13篇
  1992年   13篇
  1991年   9篇
  1990年   8篇
  1989年   10篇
  1988年   6篇
  1987年   12篇
  1986年   2篇
  1985年   4篇
  1983年   3篇
  1982年   9篇
  1981年   10篇
  1980年   6篇
  1979年   12篇
  1978年   6篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1964年   1篇
  1944年   1篇
排序方式: 共有1073条查询结果,搜索用时 265 毫秒
21.
Batch and single-flow four-stage continuous ethanol fermentations of bagasse hydrolysate have been investigated at pH 4.0 and 30°C with a strain of the yeast Saccharomyces cerevisiae. The studies were carried out in the laboratory four-stage cascade continuous stirred-tank fermentors at varying feed glucose concentrations (10, 14, 18, and 22%). The range of dilution rates employed varied from 0.05 to 0.2 hr?1. The hydrolysate was supplemented with a cheap nitrogen source (CNS), CaCl2·H2O and MgSO4·7H2O. A 2% (v/v) CNS concentration was found to be sufficient to avoid growth limitation at a glucose concentration of 116 g/liter. The conditions of continuous culture in a multistage system are predicted by a graphical method based on batch-culture data. The results thus obtained are compared with those predicted by kinetic models and with the experimental results. The variations between the results obtained experimentally and those computed either by a kinetic model or by graphical analyses were found to be within the limits of experimental error. The solutions based on the concept of minimum residence time necessary to achieve the desired biomass or product concentrations are also discussed.  相似文献   
22.
Rapid fermentation of bagasse hydrolysate to ethanol under anaerobic conditions by a strain of Saccharomyces cerevisiae has been studied in batch and continuous cultures at pH 4.0 and 30°C temperature with cell recycle. By using a 23.6 g/liter cell concentration, a concentation of 9.7% (w/v)ethanol was developed in a period of 6 hr. The rate of fermentation was found to increase with supplementation of yeast vitamins in the hydrolysate. In continuous culture employing cell recycle and a 0.127 v/v/m air flow rate, a cell mass concentration of 48.5 g/liter has been achieved. The maximum fermentor productivity of ethanol obtained under these conditions was 32.0 g/liter/hr, which is nearly 7.5 times higher than the normal continuous process without cell recycle and air sparging. The ethanol productivity was found to decrease linearly with ethanol concentration. Conversion of glucose in the hydrolysate to ethanol was achieved with a yield of 95 to 97% of theoretical.  相似文献   
23.
A wide coverage of the retinae of a large number of animals (Calotes, Varanus, Naja, Athene, Passer, Streptopelia, Psittacula and Funambulus) from the point of view of the histoenzymological distribution of non-specific esterase amongst the various constituents reveals mostly identical patterns. They are as follows: 1. Outer segments - positive in all cases. 2. Outer plexiform layer - equipped with enzymatic activity in all the instances. 3. Inner nuclear layer - thin cytoplasmic rim of the neurons characterized by positive activity; the nuclei of the neurons are completely negative. 4. Inner plexiform layer - this layer is endowed with the enzymatic activity. 5. Ganglion cells - negative in all cases. 6. Nerve fibres of the layer of nerve fibres, situated adjasent to ganglion cells are positive in all the animals; in case of squirrel oligodandroglial cells present in the region have demonstrated activity of a high order. On of the high-lights of the present contribution is demarcation of the inner plexiform layer into three stratified zones, equipped with enzymatic activity in Calotes, Streptopelia, Naja and Funambulus. Such stratifications are not seen in Varanus, Passer and Psittacula. The significance of the various patterns and the equipment of the enzyme in various constituents at various locals have been discussed in relation to the metabolic functions, zone-wise and interzone-wise in visual processes of various animals.  相似文献   
24.
25.
26.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-α-D-glucan 6-α-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   
27.
An efficient protocol has been developed for the synthesis of a small library of 3′-deoxy-3′-(4-substituted-triazol-1-yl)-5-methyluridine using Cu(I)-catalyzed Huisgen–Sharpless–Meldal 1,3-dipolar cycloaddition reaction of 3′-azido-3′-deoxy-5-methyluridine with different alkynes under optimized condition in an overall yields of 76%–92%. Here, the azido precursor compound, i.e., 3′-azido-3′-deoxy-5-methyluridine was chemoenzymatically synthesized from D-xylose in good yield. Some of the alkynes used in cycloaddition reaction were synthesized by the reaction of hydroxycoumarins or naphthols with propargyl bromide in acetone using K2CO3in excellent yields. All synthesized compounds were unambiguously identified on the basis of their spectral (IR, 1H-, 13C NMR spectra, and high-resolution mass spectra) data analysis.  相似文献   
28.
Chikungunya fever is one of the reemerging vector-borne diseases. It has become a major global health problem especially in the developing countries. There are no vaccines or specific antiviral drugs available to date. This study reports small molecule inhibitors of envelope glycoprotein 2 (E2 glycoprotein) which are predicted based on Chikungunya virus–host interactions. E2 glycoprotein of Chikungunya virus interacts at 216 residue of the host receptor protein which plays a vital role in initiating infection. Understanding the structural aspects of E2 glycoprotein is crucial to develop specific inhibitors to prevent the virus binding from host receptors. In silico method was adopted to predict the sequence motifs of envelope protein, as the method like yeast two hybrid system is laborious, time consuming, and costly. The E2 glycoprotein structure of the Indian isolate was modeled using two templates (2XFC and 3JOC) and then validated. The class III PDZ domain binding motif was found to be identified at 213–216 amino acids. The corresponding peptide structures which recognize the PDZ domain binding motif were identified by the literature search and were used for generating five point pharmacophore model (ADDDR) containing acceptor, donor and aromatic ring features. Databases such as Asinex, TosLab and Maybridge were searched for the matches for the predicted pharmacophore model. Two compounds were identified as lead molecules as their glide score is?>?5?kcal/mol. Since the pharmacophore model is developed based on Chikungunya virus–host interaction, it can be used for designing promising antiviral lead compounds for the treatment of Chikungunya fever.An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:21  相似文献   
29.
OSIPP3 gene (coding for pectin methylesterase inhibitor protein) was isolated from a pre-pollinated inflorescence-specific cDNA library by differential screening of stage-specific libraries from Oryza sativa. OSIPP3 is present in the genome of rice as a single copy gene. OSIPP3 gene was expressed exclusively in the pre-pollinated spikelets of rice. Upstream regulatory region (URR) of OSIPP3 was isolated and a series of 5′-deletions were cloned upstream of GUS reporter gene and were used to transform Arabidopsis. OSIPP3_del1 and del2 transgenic plants showed GUS expression in root, anther and silique, while OSIPP3_del3 showed GUS activity only in anthers and siliques. Pollen-specific expression was observed in case of plants harboring OSIPP3_del4 construct. It can, therefore, be concluded that the OSIPP3 URR between ?178 and +108 bp is necessary for conferring pollen-specific expression in Arabidopsis.  相似文献   
30.
Secoisolariciresinol diglucosides (SDGs) (S,S)-SDG-1 (major isomer in flaxseed) and (R,R)-SDG-2 (minor isomer in flaxseed) were synthesized from vanillin via secoisolariciresinol (6) and glucosyl donor 7 through a concise route that involved chromatographic separation of diastereomeric diglucoside derivatives (S,S)-8 and (R,R)-9. Synthetic (S,S)-SDG-1 and (R,R)-SDG-2 exhibited potent antioxidant properties (EC50 = 292.17 ± 27.71 μM and 331.94 ± 21.21 μM, respectively), which compared well with that of natural (S,S)-SDG-1 (EC50 = 275.24 ± 13.15 μM). These values are significantly lower than those of ascorbic acid (EC50 = 1129.32 ± 88.79 μM) and α-tocopherol (EC50 = 944.62 ± 148.00 μM). Compounds (S,S)-SDG-1 and (R,R)-SDG-2 also demonstrated powerful scavenging activities against hydroxyl [natural (S,S)-SDG-1: 3.68 ± 0.27; synthetic (S,S)-SDG-1: 2.09 ± 0.16; synthetic (R,R)-SDG-2: 1.96 ± 0.27], peroxyl [natural (S,S)-SDG-1: 2.55 ± 0.11; synthetic (S,S)-SDG-1: 2.20 ± 0.10; synthetic (R,R)-SDG-2: 3.03 ± 0.04] and DPPH [natural (S,S)-SDG-1: EC50 = 83.94 ± 2.80 μM; synthetic (S,S)-SDG-1: EC50 = 157.54 ± 21.30 μM; synthetic (R,R)-SDG-2: EC50 = 123.63 ± 8.67 μM] radicals. These results confirm previous studies with naturally occurring (S,S)-SDG-1 and establish both (S,S)-SDG-1 and (R,R)-SDG-2 as potent antioxidants and free radical scavengers for potential in vivo use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号