首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   31篇
  国内免费   2篇
  531篇
  2024年   1篇
  2023年   2篇
  2022年   11篇
  2021年   21篇
  2020年   9篇
  2019年   12篇
  2018年   12篇
  2017年   6篇
  2016年   21篇
  2015年   16篇
  2014年   29篇
  2013年   44篇
  2012年   43篇
  2011年   40篇
  2010年   26篇
  2009年   17篇
  2008年   29篇
  2007年   29篇
  2006年   15篇
  2005年   18篇
  2004年   17篇
  2003年   19篇
  2002年   14篇
  2001年   12篇
  2000年   13篇
  1999年   7篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   7篇
  1993年   1篇
  1992年   7篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有531条查询结果,搜索用时 15 毫秒
141.
142.
A direct detection of Escherichia coli genomic DNA using gold nanoprobes   总被引:1,自引:0,他引:1  

Background

Electrospun nanofibers have been widely used as substrata for mammalian cell culture owing to their structural similarity to natural extracellular matrices. Structurally consistent electrospun nanofibers can be produced with synthetic polymers but require chemical modification to graft cell-adhesive molecules to make the nanofibers functional. Development of a facile method of grafting functional molecules on the nanofibers will contribute to the production of diverse cell type-specific nanofiber substrata.

Results

Small molecules, peptides, and functionalized gold nanoparticles were successfully incorporated with polymethylglutarimide (PMGI) nanofibers through electrospinning. The PMGI nanofibers functionalized by the grafted AuNPs, which were labeled with cell-adhesive peptides, enhanced HeLa cell attachment and potentiated cardiomyocyte differentiation of human pluripotent stem cells.

Conclusions

PMGI nanofibers can be functionalized simply by co-electrospinning with the grafting materials. In addition, grafting functionalized AuNPs enable high-density localization of the cell-adhesive peptides on the nanofiber. The results of the present study suggest that more cell type-specific synthetic substrata can be fabricated with molecule-doped nanofibers, in which diverse functional molecules are grafted alone or in combination with other molecules at different concentrations.  相似文献   
143.
Spleen tyrosine kinase (Syk) is an important non-receptor tyrosine kinase and its aberrant regulation is associated with a variety of allergic disorders and autoimmune diseases. To identify small molecule inhibitors of Syk in high-throughput assays, recombinant Syk protein is needed in bulk quantity. We studied the expression of recombinant human Syk in three heterologous systems: E. coli, baculovirus expression vector system (BEVS), and the cellular slime mold Dictyostelium discoideum (Dd). Syk activity was higher in the BEVS as compared to the Dd expression host, whereas in E. coli, no activity was observed under our assay conditions. Purified Syk kinase domain protein from BEVS showed concentration dependent inhibition with OXSI-2, a known Syk inhibitor. Molecular modeling and docking studies were performed to understand the binding mode and critical interactions of the inhibitor with catalytic domain of Syk. The BEVS generated Syk kinase domain showed stability upon multiple freeze-thaw cycles and exhibited significantly higher levels of tyrosine phosphorylation at pTyr525/Tyr526 in the Syk activation loop. Based on our data, we conclude that BEVS is the ideal host to produce an active and stable enzyme, which can be successfully employed for screening of Syk inhibitors in a high-throughput system.  相似文献   
144.
Selected oil cakes, neem, castor and mahua, were tried independently and in combination with a chemical nematicide (carbofuran 3G) for the management of Pratylenchus delattrei in crossandra under glass house conditions. The neem oil cake was effective compared to other oil cakes used and there was a synergistic effect when the neemcake was coupled with carbofuran 3G in the management of Pratylenchus delattrei. The treatment resulted in better establishment of seedlings, and with increased plant bio-mass and flower yield.  相似文献   
145.
Exchange of acyclic glycosyl dithioacetals to their O,O-acetals has been achieved by a generalized reaction protocol mediated by 1,3-dibromo-5,5-dimethylhydantoin under mild, metal-free and neutral conditions. This methodology has been extended to the synthesis of alkyl glycofuranosides.  相似文献   
146.
Exposure of mangrove seedlings to electric current was studied at an intensity of 10, 20 and 30 mA to 0.5, 1, 3, 6, 12 and 24 h in different combinations, either to plumule or radicle or both parts of the propagules of Rhizophora mucronata Poir (sample size = 30). The electric current-treated propagules and untreated control were cultured hydroponically in sea water for 75 days, and root and shoot growth parameters measured. The root elongation was significantly influenced by duration of exposure, site of propagule treated and combined effects of current intensity x site of propagule treated. Leaf number and area were significantly influenced by intensity of electric current and duration of exposure; whereas shoot elongation was affected by the duration of exposure. The root number was significantly affected by duration of exposure. In general, the electric impulse improved the growth characteristics of shoot and root.  相似文献   
147.
The kinetics of human polymerase beta (pol beta) binding to the single-stranded DNA, in the (pol beta)(16) and (pol beta)(5) binding modes, that differ in the number of occluded nucleotide residues in the protein-DNA complexes, have been examined, using the fluorescence stopped-flow technique. This is the first determination of the mechanism of ssDNA recognition by human pol beta. Binding of the enzyme to the ssDNA containing fluorescein in the place of one of the nucleotides is characterized by a strong DNA fluorescence increase, providing the required signal to quantitatively examine the complex mechanism of ssDNA recognition. The experiments were performed with the ssDNA 20-mer, which engages the polymerase in the (pol beta)(16) binding mode and encompasses the total DNA-binding site of the enzyme, and with the 10-mer, which exclusively forms the (pol beta)(5) binding mode engaging only the 8-kDa domain of the enzyme. The obtained data and analyses indicate that the (pol beta)(16) formation occurs by a minimum four-step, sequential mechanism: (reaction: see text). Formation of the (pol beta)(5) binding mode proceeds with the same mechanism; however, both binding modes differ in the energetics of the partial reactions and the structure of the intermediates. Quantitative amplitude analysis, using the matrix projection operator approach, allowed us to determine molar fluorescence intensities of all intermediates relative to the fluorescence of the free DNA. The results indicate that (pol beta)(16) binding mode formation, which is initiated by the association of the 8-kDa domain with the DNA, is followed by subsequent intermediates stabilized by DNA binding to the 31-kDa domain. Comparison with the (pol beta)(5) binding mode formation indicates that transitions of the enzyme-DNA complex in both modes are induced at the interface of the 8-kDa domain and the DNA. The sequential nature of the mechanism indicates the lack of a conformational preequilibrium of the enzyme prior to ssDNA binding.  相似文献   
148.
Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells.  相似文献   
149.
The outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a global catastrophe. The elderly and people with comorbidity are facing a serious complication of the disease. The entry and infection strategy of SARS-CoV-2 in a host cell is raised by an amazing way of angiotensin-converting enzyme (ACE) 2 (ACE2) receptor recognition and imbalance of ACE/ACE2 in various organs, especially in the lungs. Here it has been discussed the role of interferon and protease during the receptor recognition (begining of infection) and followed by the impact of cytokine and hypoxia in the context of the balance of ACE/ACE2. It has also very concisely delineated the biochemistry and mechanism of ACE/ACE2 balance in different stages of infection and its role in comorbidity.  相似文献   
150.
Generally, limited research is extended in studying stability and applicational properties of silver nanoparticles (Ag NPs) synthesized by adopting ‘green chemistry’ protocol. In this work, we report on the synthesis of stable Ag NPs using plant-derived materials such as leaf extract of Neem (Azadirachta indica) and biopolymer pectin from apple peel. In addition, the applicational properties of Ag NPs such as surface-enhanced Raman scattering (SERS) and antibacterial efficiencies were also investigated. As-synthesized nanoparticles (NPs) were characterized using various instrumentation techniques. Both the plant materials (leaf extract and biopolymer) favored the synthesis of well-defined NPs capped with biomaterials. The NPs were spherical in shape with an average particle size between 14-27 nm. These bio-NPs exhibited colloidal stability in most of the suspended solutions such as water, electrolyte solutions (NaCl; NaNO3), biological solution (bovine serum albumin), and in different pH solutions (pH 7; 9) for a reasonable time period of 120 hrs. Both the bio-NPs were observed to be SERS active through displaying intrinsic SERS signals of the Raman probe molecule (Nile blue A). The NPs were effective against the Escherichia coli bacterium when tested in nutrient broth and agar medium. Scanning and high-resolution transmission electron microscopy (SEM and HRTEM) images confirmed cellular membrane damage of nanoparticle treated E. coli cells. These environmental friendly template Ag NPs can be used as an antimicrobial agent and also for SERS based analytical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号