首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   24篇
  2023年   3篇
  2022年   11篇
  2021年   22篇
  2020年   11篇
  2019年   10篇
  2018年   18篇
  2017年   12篇
  2016年   20篇
  2015年   16篇
  2014年   22篇
  2013年   32篇
  2012年   36篇
  2011年   30篇
  2010年   17篇
  2009年   10篇
  2008年   15篇
  2007年   26篇
  2006年   10篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1981年   2篇
排序方式: 共有366条查询结果,搜索用时 15 毫秒
301.
An insight into the drought stress induced alterations in plants   总被引:1,自引:0,他引:1  
  相似文献   
302.
The oxidative stress-responsive kinase 1 (OSR1) is activated by WNK (with no K kinases) and in turn stimulates the thiazide-sensitive Na-Cl cotransporter (NCC) and the furosemide-sensitive Na-K-2Cl cotransporter (NKCC), thus contributing to transport and cell volume regulation. Little is known about extrarenal functions of OSR1. The present study analyzed the impact of decreased OSR1 activity on the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. DCs were cultured from bone marrow of heterozygous WNK-resistant OSR1 knockin mice (osr(KI)) and wild-type mice (osr(WT)). Cell volume was estimated from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, cytosolic pH (pH(i)) from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein fluorescence, and Na(+)/H(+) exchanger activity from Na(+)-dependent realkalinization following ammonium pulse and migration utilizing transwell chambers. DCs expressed WNK1, WNK3, NCC, NKCC1, and OSR1. Phosphorylated NKCC1 was reduced in osr(KI) DCs. Cell volume and pH(i) were similar in osr(KI) and osr(WT) DCs, but Na(+)/H(+) exchanger activity and ROS production were higher in osr(KI) than in osr(WT) DCs. Before LPS treatment, migration was similar in osr(KI) and osr(WT) DCs. LPS (1 μg/ml), however, increased migration of osr(WT) DCs but not of osr(KI) DCs. Na(+)/H(+) exchanger 1 inhibitor cariporide (10 μM) decreased cell volume, intracellular reactive oxygen species (ROS) formation, Na(+)/H(+) exchanger activity, and pH(i) to a greater extent in osr(KI) than in osr(WT) DCs. LPS increased cell volume, Na(+)/H(+) exchanger activity, and ROS formation in osr(WT) DCs but not in osr(KI) DCs and blunted the difference between osr(KI) and osr(WT) DCs. Na(+)/H(+) exchanger activity in osr(WT) DCs was increased by the NKCC1 inhibitor furosemide (100 nM) to values similar to those in osr(KI) DCs. Oxidative stress (10 μM tert-butyl-hydroperoxide) increased Na(+)/H(+) exchanger activity in osr(WT) DCs but not in osr(KI) DCs and reversed the difference between genotypes. Cariporide virtually abrogated Na(+)/H(+) exchanger activity in both genotypes and blunted LPS-induced cell swelling and ROS formation in osr(WT) mice. In conclusion, partial OSR1 deficiency influences Na(+)/H(+) exchanger activity, ROS formation, and migration of dendritic cells.  相似文献   
303.
AT1R has been reported to play an important role in the progression of HIV-associated nephropathy (HIVAN); however, the effect of AT2R has not been studied. Age and sex matched control (FVB/N) and Tg26 mice aged 4, 8, and 16 weeks were studied for renal tissue expression of AT1R and AT2R (Protocol A). Renal tissue mRNA expression of AT2R was lower in Tg26 mice when compared with control mice. In Protocol B, Tg26 mice were treated with either saline, telmisartan (TEL, AT1 blocker), PD123319 (PD, AT2R blocker), or TEL + PD for two weeks. TEL-receiving Tg26 (TRTg) displayed less advanced glomerular and tubular lesions when compared with saline-receiving Tg26 (SRTg). TRTgs displayed enhanced renal tissue AT2R expression when compared to SRTgs. Diminution of renal tissue AT2R expression was associated with advanced renal lesions in SRTgs; whereas, upregulation of AT2R expression in TRTgs was associated with attenuated renal lesions. PD-receiving Tg26 mice (PDRTg) did not show any alteration in the course of HIVAN; whereas, PD + TEL-receiving Tg26 (PD-TRTg) showed worsening of renal lesions when compared to TRTgs. Interestingly, plasma as well as renal tissues of Tg26 mice displayed several fold higher concentration of Ang III, a ligand of AT2R.  相似文献   
304.
Rapamycin, a widely used immunosuppressive drug, has been shown to interfere with the function of dendritic cells (DCs), antigen-presenting cells contributing to the initiation of primary immune responses and the establishment of immunological memory. DC function is governed by the Na(+)/H(+) exchanger (NHE), which is activated by bacterial lipopolysaccharides (LPS) and is required for LPS-induced cell swelling, reactive oxygen species (ROS) production and TNF-α release. The present study explored, whether rapamycin influences NHE activity and/or ROS formation in DCs. Mouse DCs were treated with LPS in the absence and presence of rapamycin (100 nM). ROS production was determined from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, cytosolic pH (pH(i)) from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from the Na(+)-dependent realkalinization following an ammonium pulse, cell volume from forward scatter in FACS analysis, and TNF-α production utilizing ELISA. In the absence of LPS, rapamycin did not significantly modify cytosolic pH, NHE activity or cell volume but significantly decreased ROS formation. LPS stimulated NHE activity, enhanced forward scatter, increased ROS formation, and triggered TNF-α release, effects all blunted in the presence of rapamycin. NADPH oxidase inhibitor Vas-2870 (10 μM) mimicked the effect of rapamycin on LPS induced stimulation of NHE activity and TNF-α release. The effect of rapamycin on TNF-α release was also mimicked by the antioxidant ROS scavenger Tempol (30 μM) and partially reversed by additional application of tert-butylhydroperoxide (10 μM). In conclusion, in DCs rapamycin disrupts LPS induced ROS formation with subsequent inhibition of NHE activity, cell swelling and TNF-α release.  相似文献   
305.
Chronic exposure of blood vessels to cardiovascular risk factors such as free fatty acids, LDL-cholesterol, homocysteine and hyperglycemia can give rise to endothelial dysfunction, partially due to decreased synthesis and bioavailability of nitric oxide (NO). Many of these same risk factors have been shown to induce endoplasmic reticulum (ER) stress in endothelial cells. The objective of this study was to examine the mechanisms responsible for endothelial dysfunction mediated by ER stress. ER stress elevated both intracellular and plasma membrane (PM) cholesterols in BAEC by ~3-fold, indicated by epifluorescence and cholesterol oxidase methods. Increases in cholesterol levels inversely correlated with neutral sphingomyelinase 2 (NSMase2) activity, endothelial nitric oxide synthase (eNOS) phospho-activation and NO-production. To confirm that ER stress-induced effects on PM cholesterol were a direct consequence of decreased NSMase2 activity, enzyme expression was either enhanced or knocked down in BAEC. NSMase2 over-expression did not significantly affect cholesterol levels or NO-production, but increased eNOS phosphorylation by ~1.7-fold. Molecular knock down of NSMase2 decreased eNOS phosphorylation and NO-production by 50% and 40%, respectively while increasing PM cholesterol by 1.7-fold and intracellular cholesterol by 2.7-fold. Furthermore, over-expression of NSMase2 in ER-stressed BAEC lowered cholesterol levels to within control levels as well as nearly doubled the NO production, restoring it to ~74% and 68% of controls using tunicamycin and palmitate, respectively. This study establishes NSMase2 as a pivotal enzyme in the onset of endothelial ER stress-mediated vascular dysfunction as its inactivation leads to the attenuation of NO production and the elevation of cellular cholesterol.  相似文献   
306.
Harpin, an elicitor molecule of bacterial origin induces hypersensitive response (HR) in non-host plants. In an attempt to induce male sterility, harpin was tagged with a signal peptide and expressed downstream to tapetum-specific TA29 promoter resulting in extracellular secretion, subsequent degeneration of tapetum and development of male sterility in tobacco. Putative transgenics were analyzed by PCR amplification of transgene, semiquantitative RT-PCR analysis from total RNA extracts from anther tissue with transgene specific probe, Western blotting using polyclonal antibody raised against harpin, by transmission and scanning electron microscopy, and by confocal microscopy of anthers and pollen at various stages of development. Varying degrees of male sterility (30–100 %) was observed with plants showing complete and partial male sterility as well as several morphological variations were seen especially in leaves and flowers. Further, some of the transgenics showed un-induced of HR-like local lesions in the vegetative tissues. HarpinPss got deposited on the pollen grains upon tapetal degeneration resulting in significant alterations in the morphology of pollen cell wall. However, megagametogenesis was not affected in complete and partial male sterile plants and female gametes were completely fertile. The complete male sterility was attributed to premature tapetal cell death due to sufficient extracellular harpinPss accumulation whereas insufficient protein content might be the reason for partial male sterility. These findings indicate the possible use of cytotoxic harpinPss for the development of male sterile plants.  相似文献   
307.
308.
The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi‐controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field‐grown plants under a conventional flooded system of rice intensification (SRI) and in dry‐seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α‐proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml?1) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non‐heterocystous filaments under aerobic as well as anaerobic conditions. PCR‐DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice.  相似文献   
309.
In the present study, scale-up systems for cellulase production and enzymatic hydrolysis of pre-treated rice straw at high-solid loadings were designed, fabricated and tested in the laboratory. Cellulase production was carried out using tray fermentation at 45 °C by Aspergillus terreus in a temperature-controlled humidity chamber. Enzymatic hydrolysis studies were performed in a horizontal rotary drum reactor at 50 °C with 25 % (w/v) solid loading and 9 FPU g?1 substrate enzyme load using in-house as well commercial cellulases. Highly concentrated fermentable sugars up to 20 % were obtained at 40 h with an increased saccharification efficiency of 76 % compared to laboratory findings (69.2 %). These findings demonstrate that we developed a simple and less energy intensive bench scale system for efficient high-solid saccharification. External supplementation of commercial β-glucosidase and hemicellulase ensured better hydrolysis and further increased the saccharification efficiency by 14.5 and 20 %, respectively. An attempt was also made to recover cellulolytic enzymes using ultrafiltration module and nearly 79–84 % of the cellulases and more than 90 % of the sugars were recovered from the saccharification mixture.  相似文献   
310.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号